9.已知-1<α<0,則( 。
A.${0.2^α}>{(\frac{1}{2})^α}>{2^α}$B.${2^α}>{0.2^α}>{(\frac{1}{2})^α}$C.${(\frac{1}{2})^α}>{0.2^α}>{2^α}$D.${2^α}>{(\frac{1}{2})^α}>{0.2^α}$

分析 根據(jù)已知可得函數(shù)y=xa在(0,+∞)上是減函數(shù),比較三個(gè)底數(shù)的大小,可得答案.

解答 解:∵-1<α<0,
故函數(shù)y=xa在(0,+∞)上是減函數(shù),
∵0.2$<\frac{1}{2}<2$,
故${0.2^α}>{(\frac{1}{2})^α}>{2^α}$,
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是冪函數(shù)的圖象和性質(zhì),熟練掌握冪函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=x(x-a).
(1)當(dāng)x∈[0,1]時(shí),f(x)有最小值-3,求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=f(x)-lnx有零點(diǎn),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某設(shè)備的使用年限x和維修費(fèi)用y(萬(wàn)元)有如下統(tǒng)計(jì)數(shù)據(jù)
x3456
y2.5344.5
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y與x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$
(2)試估計(jì)當(dāng)使用年限為10年時(shí),維修費(fèi)用是多少?
(參考數(shù)據(jù)$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$,其中($\overline{x}$,$\overline{y}$)為樣本中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)x,y滿足的約束條件$\left\{\begin{array}{l}{3x+4y-5≥0}\\{y≤2}\\{x≤3}\end{array}\right.$,則z=x2+y2的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-9≤0}\end{array}\right.$時(shí),所表示的平面區(qū)域?yàn)镈,則z=x+3y的最大值等于12,若直線y=a(x+1)與區(qū)域D有公共點(diǎn),則a的取值范圍是a$≤\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.對(duì)實(shí)數(shù)a和b,定義運(yùn)算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$,設(shè)函數(shù)f(x)=(x2-2)?(x-x2),x∈R.若函數(shù)y=f(x)-K的圖象與x軸恰有三個(gè)公共點(diǎn),則實(shí)數(shù)K的取值范圍是(-2,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=f(x)的部分圖象如圖所示,函數(shù)g(x)=sin(2x+φ)(0<φ<π)為偶函數(shù),要得到g(x)的圖象,只需將y=f(x)的圖象向( 。┢揭疲ā 。﹤(gè)單位.
A.右:$\frac{π}{6}$B.左:$\frac{π}{6}$C.右:$\frac{π}{12}$D.左:$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,a=1,b=6,C=60°,則三角形的面積為( 。
A.$\frac{3}{2}$B.$\frac{3\sqrt{3}}{2}$C.3$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={x|1<x-1≤4},B=(-∞,a),若A⊆B,則實(shí)數(shù)a的取值范圍是(5,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案