設函數(shù)f(x)=x3+ax2+bx+cx=1處取得極值-2,試用c表示ab,并求f(x)的單調區(qū)間。

解:依題意有

解得  從而

。

,得。

由于處取得極值,故,即。

(1)  若,即,則當時,;

時,;

時,;

從而的單調增區(qū)間為;單調減區(qū)間為

(2)  若,即,同上可得,

的單調增區(qū)間為;單調減區(qū)間為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-
92
x2+6x-a

(1)對于任意實數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-(
12
)x-2
,則其零點所在區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-(
1
2
)x-2
,則其零點所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-tx+
t-1
2
,t∈R

(I)試討論函數(shù)f(x)在區(qū)間[0,1]上的單調性:
(II)求最小的實數(shù)h,使得對任意x∈[0,1]及任意實數(shù)t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x
3
 
-3a
x
2
 
+3bx
的圖象與直線12x+y-1=0相切于點(1,-11).
(I)求a,b的值;
(II)如果函數(shù)g(x)=f(x)+c有三個不同零點,求c的取值范圍.

查看答案和解析>>

同步練習冊答案