已知α.β是平面,m.n是直線,給出下列命題
①若m⊥α,m∥β,則α⊥β
②如果m⊥α,m⊥β,則α∥β
③如果m?α,n?α,m,n是異面直線,那么n不與α相交.
④若α∩β=m,n∥m且n?α,n?β,則n∥α且n∥β.
其中真命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:①若m⊥α,m∥β,則α⊥β,可由面面垂直定理進(jìn)行判斷;
②如果m⊥α,m⊥β,則α∥β,由面面平行的條件進(jìn)行判斷;
③如果m?α,n?α,m,n是異面直線,那么n不與α相交,由線面位置關(guān)系判斷.
④若α∩β=m,n∥m且n?α,n?β,則n∥α且n∥β,由線面平行的條件判斷.
解答:解:①若m⊥α,m∥β,則α⊥β,此命題正確,因?yàn)橛蒻∥β可得β內(nèi)存在一條直線l與m平行,又m⊥α,可得l⊥α,由面面垂直的判定定理知,α⊥β;
②如果m⊥α,m⊥β,則α∥β,此命題正確,因?yàn)榇怪庇谕恢本的兩個(gè)平面平行;
③如果m?α,n?α,m,n是異面直線,那么n不與α相交,此命題不正確,因?yàn)樵陬}設(shè)條件下,n與α相交,且交點(diǎn)不在直線m上,可以保證m,n是異面直線.
④若α∩β=m,n∥m且n?α,n?β,則n∥α且n∥β此命題正確,因?yàn)橛删面平行的判定定理知,面外一條直線與面內(nèi)一條直線平行,可得此線與面平行.
綜上,正確命題有三個(gè)
故選C
點(diǎn)評(píng):本題考查空間中直線與平面之間的位置關(guān)系,解答本題關(guān)鍵是熟練掌握線面間位置關(guān)系的判斷條件以及較好的空間想像能力.本題考查了推理論證的能力.