9.在△ABC中,設(shè)a,b,c分別為角A,B,C的對邊,若a=5,A=$\frac{π}{4}$,cosB=$\frac{3}{5}$,則邊b=4$\sqrt{2}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinB的值,利用正弦定理即可求b的值.

解答 解:在△ABC中,∵cosB=$\frac{3}{5}$,B∈(0,π),
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
又∵a=5,A=$\frac{π}{4}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{5×\frac{4}{5}}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$.
故答案為:4$\sqrt{2}$.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,已知a1=20,前n項和為Sn,且S6=S15,
(1)求{an}的通項公式;
(2)求當n取何值時,Sn取得最大值,并求出它的最大值;
(3)求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等比數(shù)列{an}的前n項和為Sn,若S3是2a1與a2的等差中項,則該數(shù)列的公比q=( 。
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$,(θ為參數(shù)),直線l經(jīng)過點P(2,2),傾斜角α=$\frac{π}{3}$,設(shè)l與圓C相交于A,B兩點,則|PA||PB|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線y=x-1與拋物線y2=2x相交于P、Q兩點,拋物線上一點M與P、Q構(gòu)成△MPQ的面積為$\frac{{3\sqrt{3}}}{2}$,這樣的點M有且只有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)已知x,y都是正實數(shù),求證:x3+y3≥x2y+xy2;
(2)已知a,b,c都是正實數(shù),求證:a3+b3+c3≥$\frac{1}{3}$(a2+b2+c2)(a+b+c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.計算定積分$\int_0^{\frac{π}{2}}{({3x+sinx})dx}$值是(  )
A.$\frac{{3{π^2}}}{8}-1$B.$\frac{{3{π^2}}}{8}+1$C.$\frac{{3{π^2}}}{4}-1$D.$\frac{{3{π^2}}}{4}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,直線l與雙曲線$E:{x^2}-\frac{y^2}{4}=1$及其漸近線依次交于A、B、C、D四點,記$\frac{{|{AB}|}}{{|{BD}|}}=λ,\frac{{|{AC}|}}{{|{CD}|}}=μ$.
(Ⅰ)若直線l的方程為y=x+2,求λ及μ;
(Ⅱ)請根據(jù)(Ⅰ)的計算結(jié)果猜想λ與μ的關(guān)系,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.編寫一個程序框圖,求函數(shù)$f(x)=\left\{\begin{array}{l}2x,x≥3\\{x^2},x<3\end{array}\right.$的函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案