(本小題共14分)已知是由滿(mǎn)足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿(mǎn)足.
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說(shuō)明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,,當(dāng),且時(shí),.
解:(Ⅰ)因?yàn)棰佼?dāng)時(shí),,
所以方程有實(shí)數(shù)根0;
②,
所以,滿(mǎn)足條件;
由①②,函數(shù)是集合中的元素. …………5分
(Ⅱ)假設(shè)方程存在兩個(gè)實(shí)數(shù)根,,
則,.
不妨設(shè),根據(jù)題意存在,
滿(mǎn)足.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_DA.files/image018.png">,,且,所以.
與已知矛盾.又有實(shí)數(shù)根,
所以方程有且只有一個(gè)實(shí)數(shù)根. …………10分
(Ⅲ)當(dāng)時(shí),結(jié)論顯然成立;
當(dāng),不妨設(shè).
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_DA.files/image025.png">,且所以為增函數(shù),那么.
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_DA.files/image029.png">,所以函數(shù)為減函數(shù),
所以.
所以,即.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_DA.files/image034.png">,所以, (1)
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_DA.files/image036.png">,所以, (2)
(1)(2)得即.
所以.
綜上,對(duì)于任意符合條件的,總有成立.……14分
【解析】本題是一道以集合為背景的創(chuàng)新題,考查函數(shù)的性質(zhì)和不等式的證明?疾閷W(xué)生的理解能力和分析能力。讀懂題意是解題的前提,解題是注意分類(lèi)討論思想的應(yīng)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年北京卷文)(本小題共14分)
已知的頂點(diǎn)在橢圓上,在直線(xiàn)上,且.
(Ⅰ)當(dāng)邊通過(guò)坐標(biāo)原點(diǎn)時(shí),求的長(zhǎng)及的面積;
(Ⅱ)當(dāng),且斜邊的長(zhǎng)最大時(shí),求所在直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
已知雙曲線(xiàn)的離心率為,右準(zhǔn)線(xiàn)方程為
(Ⅰ)求雙曲線(xiàn)的方程;(Ⅱ)設(shè)直線(xiàn)是圓上動(dòng)點(diǎn)處的切線(xiàn),與雙曲線(xiàn)交于不同的兩點(diǎn),證明的大小為定值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年北京市宣武區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本小題共14分)
已知,動(dòng)點(diǎn)到定點(diǎn)的距離比到定直線(xiàn)的距離小.
(I)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),,求面積的最小值;
(Ⅲ)在軌跡上是否存在兩點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)?若存在,求出直線(xiàn) 的方程,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
((本小題共14分)
已知橢圓.過(guò)點(diǎn)(m,0)作圓的切線(xiàn)l交橢圓G于A,B兩點(diǎn).
(I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(II)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共14分)
已知點(diǎn),,動(dòng)點(diǎn)P滿(mǎn)足,記動(dòng)點(diǎn)P的軌跡為W.
(Ⅰ)求W的方程;
(Ⅱ)直線(xiàn)與曲線(xiàn)W交于不同的兩點(diǎn)C,D,若存在點(diǎn),使得成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com