已知兩定點E(-2,0),F(xiàn)(2,0),動點P滿足
PE
PF
=0
,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
PM
=
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,點N滿足
ON
=
OA
+
OB
(O為原點),求四邊形OANB面積的最大值,并求此時的直線l的方程.
(Ⅰ)∵動點P滿足
PE
PF
=0
,∴點P的軌跡是以EF為直徑的圓
∵E(-2,0),F(xiàn)(2,0),
∴點P的軌跡方程x2+y2=4
設M(x,y)是曲線C上任一點,∵PM⊥x軸,點M滿足
PM
=
MQ

∴P(x,2y)
∵點P的軌跡方程x2+y2=4
∴x2+4y2=4
∴求曲線C的方程是
x2
4
+y2=1

(Ⅱ)∵
ON
=
OA
+
OB
,∴四邊形OANB為平行四邊形
當直線l的斜率不存在時,不符合題意;
當直線l的斜率存在時,設l:y=kx-2,l與橢圓交于A(x1,y1),B(x2,y2
直線方程代入橢圓方程,可得(1+4k2)x2-16kx+12=0
∴x1+x2=
16k
1+4k2
,x1x2=
12
1+4k2

由△=256k2-48(1+4k2)>0,可得k>
3
2
k<-
3
2

S△OAB=
1
2
|OD|
|x1-x2|=|x1-x2|
∴SOANB=2S△OAB=2|x1-x2|=2
(x1+x2)2-4x1x2
=8
4k2-3
(1+4k2)2

令k2=t,則
(1+4t)2
4t-3
=4t-3+
16
4t-3
+8
,當t>
3
4
,即4t-3>0時,由基本不等式,可得4t-3+
16
4t-3
+8
≥13,當且僅當4t-3=
16
4t-3
,即t=
7
4
時,取等號,此時滿足△>0
∴t=
7
4
時,
(1+4t)2
4t-3
取得最小值
∴k=±
7
2
時,四邊形OANB面積的最大值為
8
13
13

所求直線l的方程為y=
7
2
x-2
y=-
7
2
x-2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知兩定點E(-
2
,0),F(xiàn)(
2
,0),動點P滿足
PE
PF
=0,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PQ
=
2
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點,且坐標原點O到直線l的距離為
2
2
,求|AB|的最大值及對應的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩定點E(-
2
,0),F(xiàn)(
2
,0),動點P滿足
PE
PF
=0,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PQ
=
2
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點,且坐標原點O到直線l的距離為
2
2
,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•邯鄲模擬)已知兩定點E(-2,0),F(xiàn)(2,0),動點P滿足
PE
PF
=0
,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
PM
=
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,點N滿足
ON
=
OA
+
OB
(O為原點),求四邊形OANB面積的最大值,并求此時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩定點E(-
2
,0),F(xiàn)(
2
,0),動點P滿足
PE
PF
=0,由點P向x軸作垂線PQ,垂足為Q,點M滿足
PQ
=
2
MQ
,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l交曲線C于A、B兩點,且坐標原點O到直線l的距離為
2
2
,求|AB|的最大值及對應的直線l的方程.

查看答案和解析>>

同步練習冊答案