分析 由已知利用同角三角函數(shù)的基本關系求得2sinθcosθ=$\frac{120}{169}$,再根據(jù)2sinθcosθ═$\frac{2tanθ}{1+ta{n}^{2}θ}$,即可求得tanθ的值.
解答 解:∵$sinθ+cosθ=\frac{17}{13},θ∈(0,\frac{π}{4})$,
∴1+2sinθcosθ=$\frac{289}{169}$,
∴2sinθcosθ=$\frac{120}{169}$,
∵2sinθcosθ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{1+ta{n}^{2}θ}$=$\frac{120}{169}$,
∴解得:tanθ=$\frac{5}{12}$.
故答案為:$\frac{5}{12}$.
點評 本題主要考查同角三角函數(shù)的基本關系、二倍角公式的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{10}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{16}$ | B. | $\frac{5}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{16}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,1) | B. | (1,2] | C. | [-2,-1) | D. | (-1,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com