對(duì)于空間四個(gè)不同的點(diǎn)A,B,C,D,有下面5個(gè)命題:
①若AB與CD共面,則AC與BD共面;
②若AB與CD異面,則AC與BD異面;
③若AB=AC,DB=DC,則AD⊥BC;
④若AB⊥CD,AC⊥BD,則AD⊥BC;
⑤若AB=AC=AD,BC=CD=DB,則A,B,C,D一定是正三棱錐的四個(gè)頂點(diǎn).
則以上正確的命題序號(hào)是
①②③④
①②③④
; (注:填上全部正確的命題序號(hào).)
分析:由直線的位置關(guān)系定義,判斷①②正確;③的證明可轉(zhuǎn)借化證明BC⊥面AHD;
④的證明可轉(zhuǎn)化為證垂心,然后再證明BC⊥面AED來證明BC⊥AD;
⑤由正三棱錐的定義來判斷即可.
解答:解:①若AB與CD共面,則AC與BD共面,顯然①正確;
②若AB與CD異面,則AC與BD異面,顯然②正確;
③取BC的中點(diǎn)H,連接AH與DH,可證得BC⊥面AHD,進(jìn)而可得BC⊥AD,故③正確;
④作AE⊥面BCD于E,連接BE可得BE⊥CD,同理可得CE⊥BD,證得E是垂心,則可得得出DE⊥BC,
進(jìn)而可證得BC⊥面AED,即可證出BC⊥AD.故④正確;
⑤雖有AB=AC=AD,BC=CD=DB,當(dāng)A,B,C,D在同一平面內(nèi),四點(diǎn)不構(gòu)成三棱錐,故⑤不正確.
故答案為 ①②③④
點(diǎn)評(píng):本題在判斷時(shí)有一定的難度,需要構(gòu)造相關(guān)的圖形,在立體幾何中,構(gòu)造法是一個(gè)常用的方法,本題用其來將線線證明轉(zhuǎn)化線面證明
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省衢州市江山實(shí)驗(yàn)中學(xué)高二(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

對(duì)于空間四個(gè)不同的點(diǎn)A,B,C,D,有下面5個(gè)命題:
①若AB與CD共面,則AC與BD共面;
②若AB與CD異面,則AC與BD異面;
③若AB=AC,DB=DC,則AD⊥BC;
④若AB⊥CD,AC⊥BD,則AD⊥BC;
⑤若AB=AC=AD,BC=CD=DB,則A,B,C,D一定是正三棱錐的四個(gè)頂點(diǎn).
則以上正確的命題序號(hào)是    ; (注:填上全部正確的命題序號(hào).)

查看答案和解析>>

同步練習(xí)冊(cè)答案