已知函數(shù),.
(1)討論內和在內的零點情況.
(2)設內的一個零點,求上的最值.
(3)證明對恒有.[來

(1)內有唯一零點;內無零點.(2) 有最大值;的最小值.(3)詳見解析.

解析試題分析:(1)首先求導確定、內的單調性,然后根據(jù)零點判定定理確定的零點情況; (2)求導得,所以 有最大值,又內的一個零點,所以的最大值為.再由(1)的結論知的最小值應為.由,于是的最小值. (3)由(2)知時,有,即
 ,得,再將左右兩邊放縮相加即得.
(1)有唯一零點,易知單增而在
內單減,且,故內都至多有一個零點.
,
內有唯一零點;
再由內無零點.
(2)由(1)知有最大值,
有最大值;
再由(1)的結論知的最小值應為.
,于是的最小值.
(3)由(2)知時,有,即
                      ①
,則,將的值代入①中,可得

             ②
再由,得
                ③
相仿地,時,,故
            ④
時④即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 
(1)求在點處的切線方程;
(2)證明:曲線與曲線有唯一公共點;
(3)設,比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)(2011•重慶)設f(x)=2x3+ax2+bx+1的導數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關于直線x=﹣對稱,且f′(1)=0
(Ⅰ)求實數(shù)a,b的值
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的導函數(shù)。  (1)求函數(shù)的單調遞減區(qū)間;
(2)若對一切的實數(shù),有成立,求的取值范圍; 
(3)當時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設
① 當時,對任意,都有成立,求的最大值;
② 設的導函數(shù).若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)上的最大值為).
(1)求數(shù)列的通項公式;
(2)求證:對任何正整數(shù)n (n≥2),都有成立;
(3)設數(shù)列的前n項和為Sn,求證:對任意正整數(shù)n,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)當時,求函數(shù)上的最大值和最小值;
(2)若上為增函數(shù),求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=ln x-p(x-1),p∈R.
(1)當p=1時,求函數(shù)f(x)的單調區(qū)間;
(2)設函數(shù)g(x)=xf(x)+p(2x2-x-1)(x≥1),求證:當p≤-時,有g(x)≤0.

查看答案和解析>>

同步練習冊答案