已知函數(shù).

(1)求的最大值;

(2)若對(duì),總存在使得成立,求的取值范圍;

(3)證明不等式:.

 

【答案】

(1)0;(2);(3)證明過(guò)程詳見(jiàn)解析.

【解析】

試題分析:本題主要考查導(dǎo)數(shù)的應(yīng)用、不等式、數(shù)列等基礎(chǔ)知識(shí),考查思維能力、創(chuàng)新意識(shí),考查分類討論思想、轉(zhuǎn)化思想.第一問(wèn),是導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間求函數(shù)最值;第二問(wèn),雖然是恒成立問(wèn)題,但經(jīng)過(guò)分析可以轉(zhuǎn)化成求,通過(guò)討論確定每段區(qū)間上函數(shù)的單調(diào)性和最值;第三問(wèn),先通過(guò)觀察湊出所要證明的表達(dá)式的形式,再利用等比數(shù)列的前n項(xiàng)和公式求和,最后通過(guò)放縮法得到結(jié)論.

試題解析: (1)∵ ()

  ∴當(dāng)時(shí),時(shí) 

  ∴的最大值為0

(2),使得成立,等價(jià)于

由(1)知,當(dāng)時(shí),時(shí)恒為正,滿足題意.

當(dāng)時(shí),,令解得

上單調(diào)遞增,在上單調(diào)遞減,

時(shí),,∴ ∴ ∴

時(shí),,

,為正,在為負(fù),

,

當(dāng)時(shí)不合題意,

綜上的取值范圍為  .

(3)由(1)知  ()

  ∴   ∴

.

考點(diǎn):1.利用導(dǎo)數(shù)求最值;2.恒成立問(wèn)題;3.等比數(shù)列的前n項(xiàng)和公式;4.放縮法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ax3+bx2+6x+1的遞增區(qū)間為(-2,3),則a,b的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-
2x
+1-alnx
,a>0,
(1)討論f(x)的單調(diào)性;
(2)設(shè)a=3,求f(x)在區(qū)間[1,e2]上值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a
1-x2
+
1+x
+
1-x
的最大值為g(a).
(1)設(shè)t=
1+x
+
1-x
,求t的取值范圍;
(2)求g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:函數(shù)f(x)在R上為增函數(shù);
(2)當(dāng)函數(shù)f(x)為奇函數(shù)時(shí),求a的值;
(3)當(dāng)函數(shù)f(x)為奇函數(shù)時(shí),求函數(shù)f(x)在[-1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x(x+1),x≥0
x(1-x),x<0
,則f(0)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案