平面直角坐標(biāo)系xOy中,雙曲線
x2
4
-
y2
m
=1
的離心率為
5
,則m的值為
16
16
分析:由雙曲線方程得y2的分母m>0,所以雙曲線的焦點必在x軸上.因此a2=4>0,可得c2=m+4,根據(jù)雙曲線的離心率為
5
,可得c2=5a2,建立關(guān)于m的方程,求解即可.
解答:解:∵m>0
∴雙曲線-=1的焦點必在x軸上
因此a2=4>0,b2=m
∴c2=m+4
∵雙曲線
x2
4
-
y2
m
=1
的離心率為
5
,
c
a
=
5
,可得c2=5a2,
所以m+4=20,解之得m=16,
故答案為:16.
點評:本題給出含有字母參數(shù)的雙曲線方程,在已知離心率的情況下求參數(shù)的值,著重考查了雙曲線的概念與性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,“方程
x2
k-1
+
y2
k-3
=1
表示焦點在x軸上的雙曲線”的充要條件是k∈
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,Pn(n,n2)(n∈N+)是拋物線y=x2上的點,△OPnPn+1的面積為Sn
(1)求Sn;
(2)化簡
1
S1
+
1
S2
+…+
1
Sn

(3)試證明S1+S2+…+Sn=
n(n+1)(n+2)
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系xOy中,A(4+2
3
,2),B(4,4)
,圓C是△OAB的外接圓.
(1)求圓C的方程;
(2)若過點(2,6)的直線l被圓C所截得的弦長為4
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為:
x=-2+
3
5
t
y=2+
4
5
t
(t為參數(shù)),它與曲線C:(y-2)2-x2=1交于A,B兩點.
(1)求|AB|的長;
(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為(2
2
4
)
,求點P到線段AB中點M的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,已知矩形ABCD的兩邊AB,CD分別落在x軸、y軸的正半軸上,且AB=2,AD=4,點A與坐標(biāo)原點重合.現(xiàn)將矩形折疊,使點A落在線段DC上,若折痕所在的直線的斜率為k,試寫出折痕所在直線的方程及k的范圍.

查看答案和解析>>

同步練習(xí)冊答案