設函數(shù)f(x)=x2+(2a+1)x+a2+3a(a∈R).
(I)若f(x)在[0,2]上的最大值為0,求a的值;
(II)若f(x)在閉區(qū)間[α,β]上單調,且{y|y=f(x),α≤x≤β}=[α,β],求α的取值范圍.
【答案】分析:(Ⅰ)根據(jù)對稱軸的位置,利用二次函數(shù)的單調性求出該二次函數(shù)在閉區(qū)間上的最大值,再由最大值為0,求出a的值.
(Ⅱ) 若f(x)在[α,β]上遞增,則有(1);(2),即方程f(x)=x在,+∞)上有兩個不相等的實根,由 求得a的取值范圍.若f(x)在[α,β]上遞減,同理求得a的取值范圍.再把a的取值范圍取并集,即得所求.
解答:解:(Ⅰ) 當,即:時,
故 a=-6(舍去),或a=-1;
,即:時,
故a=0(舍去)或a=-3.
綜上得:a的取值為:a=-1或a=-3. (5分)
(Ⅱ) 若f(x)在[α,β]上遞增,則滿足:(1);(2),
即方程f(x)=x在,+∞)上有兩個不相等的實根.
方程可化為x2+2ax+a2+3a=0,設g(x)=x2+2ax+a2+3a,
,解得:.     (5分)
若f(x)在[α,β]上遞減,則滿足:
(1);(2)
得,兩式相減得(α-β)(α+β)+(2a+1)(α-β)=β-α,即α+β+2a+1=-1.
即β=-α-2a-2.
∴α2+(2a+1)α+a2+3a=-α-2a-2,即α2+(2a+2)α+a2+5a+2=0.
同理:β2+(2a+2)β+a2+5a+2=0.
即方程x2+(2a+2)x+a2+5a+2=0在上有兩個不相等的實根.
設h(x)=x2+(2a+2)x+a2+5a+2,則,解得:.    (5分)
綜上所述:
點評:本題主要考查了一元二次方程的根的分布與系數(shù)的關系,二次函數(shù)的性質的應用,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調性.
(2)若f(x)有兩個極值點x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實數(shù)m的值;
(2)當m=2時,若方程f(x)-h(x)=0在[1,3]上恰好有兩個不同的實數(shù)解,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內既有極大值又有極小值,求實數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習冊答案