20.雙曲線9x2-4y2=36的離心率為$\frac{\sqrt{13}}{2}$.

分析 雙曲線方程化為標(biāo)準(zhǔn)方程,可得a=2,b=3,c=$\sqrt{13}$,從而可求雙曲線的離心率.

解答 解:雙曲線9x2-4y2=36可化為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{9}$=1,
所以a=2,b=3,c=$\sqrt{13}$,
所以離心率e=$\frac{c}{a}$=$\frac{\sqrt{13}}{2}$.
故答案為:$\frac{\sqrt{13}}{2}$.

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,考查雙曲線的幾何性質(zhì),確定雙曲線的幾何量是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若$\left\{\begin{array}{l}{{a}^{3}-3{a}^{2}+4a=2016}\\{^{3}-3^{2}+4b=-2012}\end{array}\right.$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=1+$\frac{2}{{2}^{x}-1}$.
(Ⅰ)求f(x)的定義域;
(Ⅱ)判斷f(x)的奇偶性,并證明;
(Ⅲ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在一個三角形內(nèi)隨機撒入200粒芝麻(芝麻落到任何位置的可能性相等),恰有38粒落入該三角形的內(nèi)切圓(半徑為1)內(nèi),則該多邊形的面積約為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知角α的終邊經(jīng)過點P(-1,1),則cosα的值為( 。
A.1B.-1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項和為Sn,點(n,$\frac{{S}_{n}}{n}$),(n∈N*)均在函數(shù)y=2x-35的圖象上.
(1)求數(shù)列{an}的通項公式并證明數(shù)列是等差數(shù)列.
(2)當(dāng)n為何值時,Sn取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點P(3,1)在矩陣A=$[\begin{array}{l}{a}&{2}\\&{-1}\end{array}]$ 變換下得到點P′(5,-1).試求矩陣A和它的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x、y、u、v∈R,且x+3y-2=0,u+3v+8=0,T=x2+y2+u2+v2-2ux-2vy,則T的最小值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若實數(shù)a>1,則函數(shù)f(x)=loga(x2-5x+6)的單調(diào)減區(qū)間為(  )
A.($\frac{5}{2}$,+∞)B.(3,+∞)C.(-∞,$\frac{5}{2}$)D.(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案