15.$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是同一平面內(nèi)的三個向量,其中$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,3),$\overrightarrow{c}$=(-2,m).
(1)若$\overrightarrow{a}$⊥($\overrightarrow+\overrightarrow{c}$)求|$\overrightarrow{c}$|;
(2)若k$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$共線,求k的值.

分析 (1)根據(jù)向量的坐標(biāo)的運(yùn)算法則和向量垂直的條件,以及模的定義即可求出.
(2)根據(jù)向量共線的條件即可求出.

解答 解:(1)∵$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,3),$\overrightarrow{c}$=(-2,m),
∴$\overrightarrow$+$\overrightarrow{c}$=(-4,3+m),
∵$\overrightarrow{a}$⊥($\overrightarrow+\overrightarrow{c}$),
∴$\overrightarrow{a}$•($\overrightarrow+\overrightarrow{c}$)=-4+2(3+m)=0,
解得m=-1,
∴$\overrightarrow{c}$=(-2,-1),
∴|$\overrightarrow{c}$|=$\sqrt{5}$;
(2)由已知,k$\overrightarrow{a}$+$\overrightarrow$=(k-2,2k-3),2$\overrightarrow{a}$-$\overrightarrow$=(4,1),
∵k$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$共線,
∴1×(k-2)=4(2k-3),
解得k=-2.

點(diǎn)評 本題考查了向量的坐標(biāo)運(yùn)算以及向量的垂直和平行,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$sin\frac{α}{2}-cos\frac{α}{2}=\frac{{\sqrt{5}}}{5},α∈({\frac{π}{2},π})$,則cosα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在數(shù)列{an}中,${a_1}=\frac{5}{3}$,且3an+1=an+2.
(1)設(shè)bn=an-1,證明:{bn}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)M(0,3),N(-4,0)及點(diǎn)P(-2,4);
(1)若直線l經(jīng)過點(diǎn)P且l∥MN,求直線l的方程;
(2)求△MNP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow{m}$=(sin2x+$\frac{1+cos2x}{2}$,sinx),$\overrightarrow{n}$=($\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x,2sinx),設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,x∈R.
(1)求f(x)的最小正周期及單調(diào)增區(qū)間;
(2)求函數(shù)g(x)=f(x)+$\frac{1}{2}$在[0,π]上的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)集合A、B分別是函數(shù)y=$\frac{1}{\sqrt{{x}^{2}+2x-8}}$與函數(shù)y=lg(6+x-x2)的定義域,C={x|x2-4ax+3a2<0},若A∩B⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,|$\overrightarrow{AB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,|$\overrightarrow{CA}$|=4,|$\overrightarrow{CB}$|=3,$\overrightarrow{BP}$=2$\overrightarrow{PA}$,則$\overrightarrow{CP}$•$\overrightarrow{AB}$的值為-$\frac{23}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=x2-2x+$\frac{1}{4}$,x∈[-1,2)的值域是[-$\frac{3}{4}$,$\frac{13}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowpqz0hfi$,滿足$\overrightarrowrdbzwt5$=($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow$-($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$,求證:$\overrightarrow{a}$⊥$\overrightarrow9x5pnp1$.

查看答案和解析>>

同步練習(xí)冊答案