【題目】試求所有的正數(shù) ,使得在雙曲線的右支上總存在焦點弦,它關(guān)于原點的張角為直角。
【答案】
【解析】
記雙曲線的右焦點為,其中,,設(shè)焦點弦交雙曲線的右支于點.
由,得.①
如果,則漸近線的傾角.而雙曲線的右支含于兩漸近線所夾的角形區(qū)域內(nèi),該角形區(qū)域的頂角.此時,雙曲線右支中的任一條弦關(guān)于原點的張角皆小于,不合題意.故.
(1)當焦點弦與軸垂直時,若構(gòu)成以為斜邊的直角三角形,則是等腰直角三角形,于是,,(如圖),即點滿足,而.
由,得.
故.
而,則.
(2)當焦點弦與軸不垂直時,焦點弦與雙曲線右支的兩個交點具有不同的橫坐標,
設(shè)的方程為.
將雙曲線的方程改寫為.
則,即. ②
又方程②有兩個不同的正根,則.
由方程②得.
據(jù)式①由
,
即.
注意到,則.③
由于,故.
所以, .
又,由式③得,即.
綜合(1)、(2),的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】定義一個“希望結(jié)合”()簡稱如下:為一個非空集合,它滿足條件“若,則”。試問:在集合中,一共有多少個“希望子集合”?請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),有以下命題:
①是奇函數(shù);
②單調(diào)遞增函數(shù);
③方程僅有1個實數(shù)根;
④如果對任意有,則的最大值為2.
則上述命題正確的有_____________.(寫出所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為我國數(shù)學家趙爽(約3世紀初)在為《周髀算經(jīng)》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色、相鄰區(qū)域顏色不同,則區(qū)域不同涂色的方法種數(shù)為( )
A.360B.400C.420D.480
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝著10個外形完全相同的小球,其中標有數(shù)字1的小球有1個,標有數(shù)字2的小球有2個,標有數(shù)字3的小球有3個,標有數(shù)字4的小球有4個.
現(xiàn)從袋中任取3個小球,按3個小球上最大數(shù)字的8倍計分,每個小球被取出的可能性都相等,用表示取出的三個小球上的最大數(shù)字,求:
(1)取出的3個小球上的數(shù)字互不相同的概率;
(2)隨機變量的分布列;
(3)計算介于20分到40分之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點M為橢圓上第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與y軸交于點D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x,g(x)=2x+a,若x1∈[,1],x2∈[2,3],使得f(x1)≥g(x2),則實數(shù)a的取值范圍是( )
A.a≤1B.a≥1C.a≤2D.a≥2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com