空間四邊形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA與BC夾角的余弦值.
【答案】分析:根據(jù)已給條件該題可利用數(shù)量積的方法求解,要求OA與BC夾角的余弦值,可求的夾角的余弦值,利用,代入公式向量的夾角公式求解即可.
解答:解:=8×6cos60°=24
=8×4cos135°=-
cosθ==
所以OA與BC夾角的余弦值為
點評:本題主要考查了異面直線及其所成的角,以及向量的數(shù)量積,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,空間四邊形OABC中,
OA
=
a
,
OB
=
b
OC
=
c
,點M在
OA
上,且OM=2MA,點N為BC中點,則
MN
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在空間四邊形OABC中,
OA
=
a
OB
=
b
,
OC
=
c
,點M在線段OA上,且OM=2MA,N為BC的中點,則
MN
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,空間四邊形OABC中,
OA
=a,
OB
=b,
OC
=c,點M在OA上,且OM=
1
2
MA,N為BC中點,則
MN
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在空間四邊形OABC中,已知E是線段BC的中點,G為AE的中點,若
OA
,
OB
,
OC
分別記為
a
,
b
,
c
,則用
a
,
b
,
c
表示
OG
的結果為
OG
=
1
2
a
+
1
4
b
+
1
4
c
1
2
a
+
1
4
b
+
1
4
c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間四邊形OABC中,
OA
=
a
,
OB
=
b
OC
=
c
,點M在OA上,且OM=2MA,N為BC的中點,則
MN
=
 

查看答案和解析>>

同步練習冊答案