將函數(shù)的圖形向右平移個單位后得到的圖像,已知的部分圖像如圖所示,該圖像與y軸相交于點,與x軸相交于點P、Q,點M為最高點,且的面積為.
(1)求函數(shù)的解析式;
(2)在中,分別是角A,B,C的對邊,,且,求面積的最大值.

(1);(2).

解析試題分析:本題主要考查三角函數(shù)圖象、三角函數(shù)圖象的平移變換、余弦定理、三角函數(shù)面積、基本不等式等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力.第一問,先將的圖象向右平移個單位得到的解析式,由解析式得最大值M=2,利用三角形面積公式可得到,而周期,利用周期的計算公式得到,又因為,代入解析式得到的值,從而得到的解析式;第二問,先利用,利用特殊角的三角函數(shù)值得到角A的大小,再利用余弦定理得到b和c的一個關(guān)系式,利用基本不等式得到,代入到三角形面積公式中,得到面積的最大值.
(1)由題意可知
由于,則,∴,即                2分
又由于,且,則,∴      5分
.                                    6分
(2),,∴         8分
由余弦定理得,∴                    10分
,當(dāng)且僅當(dāng)時,等號成立,故的最大值為. 12分
考點:三角函數(shù)圖象、三角函數(shù)圖象的平移變換、余弦定理、三角函數(shù)面積、基本不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知sin α<0,tan α>0.
(1)求α角的集合;
(2)求終邊所在的象限;
(3)試判斷tansincos的符號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知sin θ、cos θ是關(guān)于x的方程x2-ax+a=0(a∈R)的兩個根.
(1)求cos+sin的值;
(2)求tan(π-θ)-的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的部分圖象如圖所示.

(1)求的表達(dá)式;
(2)設(shè),求函數(shù)的最小值及相應(yīng)的的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)f (x)的最小正周期;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(A>0,ω>0)的一系列對應(yīng)值如下表:

x
 

 

 

 

 

 

 

 
y
 
-1
 
1
 
3
 
1
 
-1
 
1
 
3
 
 
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)(k>0)周期為,當(dāng)x∈[0,]時,方程恰有兩個不同的解,求實數(shù)m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),求函數(shù)的最小正周期;
當(dāng)時,求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期。
(2)求函數(shù)的最大值及取最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量a=(cosωx,sinωx),b=(cosωx,cosωx),其中0<ω<2,函數(shù),其圖象的一條對稱軸為。
(1)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,S△ABC為其面積,若,b=1,,求a的值。

查看答案和解析>>

同步練習(xí)冊答案