函數(shù)f(x)=在閉區(qū)間[-1,1]上________連續(xù)(填是或否),最大值為________,最小值為________(填數(shù)字或無).

答案:是;5/8;0
解析:

,f(x)[11]上連續(xù).f(x)的最大值為,最小值為0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•靜安區(qū)一模)已知函數(shù)f(x)=x2+ax+3-a,a∈R.
(1)求a的取值范圍,使y=f(x)在閉區(qū)間[-1,3]上是單調(diào)函數(shù);
(2)當(dāng)0≤x≤2時,函數(shù)y=f(x)的最小值是關(guān)于a的函數(shù)m(a).求m(a)的最大值及其相應(yīng)的a值;
(3)對于a∈R,研究函數(shù)y=f(x)的圖象與函數(shù)y=|x2-2x-3|的圖象公共點的個數(shù)、坐標(biāo),并寫出你的研究結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•靜安區(qū)二模)設(shè)函數(shù)f(x)=ax+3a(其中a>0且a≠1).
(1)求函數(shù)y=f-1(x)的解析式;
(2)設(shè)g(x)=loga(x-a),當(dāng)0<a<1時,求函數(shù)h(x)=f-1(x)+g(x)在閉區(qū)間[a+2,a+3]上的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•靜安區(qū)一模)已知函數(shù)f(x)=-x2+4|x|+5.
(1)畫出函數(shù)y=f(x)在閉區(qū)間[-5,5]上的大致圖象;
(2)解關(guān)于x的不等式f(x)<7;
(3)當(dāng)4-2
2
<k<4+2
2
時,證明:f(x)<kx+4k+7對x∈R恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11.定義在R上的函數(shù)f (x)既是奇函數(shù),又是周期函數(shù),T是它的一個正周期.若將方程f (x)=0在閉區(qū)[-T,T]上的根的個數(shù)記為n,則n可能為

(A)0                              (B)1                  (C)3                     (D)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f (x)既是奇函數(shù),又是周期函數(shù),T是它的一個正周期.若將方程f (x)=0在閉區(qū)[-T,T]上的根的個數(shù)記為n,則n可能為

A.0       B.1      C.3             D.5

查看答案和解析>>

同步練習(xí)冊答案