如圖,在棱長為1的正方體ABCD-A1B1C1D1中.
(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B-ACB1體積.
【答案】分析:(1)要證AC⊥平面B1BDD1,只需證明AC垂直平面B1BD1D上的兩條相交直線DD1,BD;即可.
(2)求三棱錐B-ACB1體積.轉(zhuǎn)化為B1-ABC的體積,直接求解即可.
解答:(1)證明:∵DD1⊥面ABCD∴AC⊥DD1(2分)
又∵BD⊥AC,(3分)
且DD1,BD是平面B1BD1D上的兩條相交直線(5分)
∴AC⊥平面B1BDD1(6分)
解:(2)=(12分)
(其他解法酌情給分)
點評:本題是基礎(chǔ)題,考查幾何體的體積等知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案