(選做題)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,直線l的極坐標(biāo)方程為,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為(α為參數(shù)),若直線l與曲線C交于A,B兩點,求線段AB的長.
【答案】分析:求出直線的直角坐標(biāo)方程,利用同角三角函數(shù)的基本關(guān)系消去參數(shù)α,得到曲線C的直角坐標(biāo)方程,
求出圓心到直線的距離,利用弦長公式求得線段AB的長.
解答:解:直線l的傾斜角為60°,且經(jīng)過原點,故直線的直角坐標(biāo)方程為,
利用同角三角函數(shù)的基本關(guān)系消去參數(shù)α,得到曲線C的直角坐標(biāo)方程為(x-1)2+y2=4,
它是以C(1,0)為圓心,半徑r=2的圓.
圓心C到直線l的距離d==.∴
點評:本題考查把參數(shù)方程化為普通方程的方法,點到直線的距離公式、弦長公式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)選修4-4:坐標(biāo)系與參數(shù)方程
已知半圓C的參數(shù)方程C:
x=cosθ
y=sinθ
θ為參數(shù)且(0≤θ≤π),P為半圓C上一點,A(1,0)O為坐標(biāo)原點,點M在射線OP上,線段OM與
AP
的長度均為
π
3
.?
(1)求以O(shè)為極點,x軸為正半軸為極軸建立極坐標(biāo)系求點M的極坐標(biāo).
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,直線l的極坐標(biāo)方程為θ=
π
3
(ρ∈R)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=1+2cosα
y=2sinα.
(α為參數(shù)),若直線l與曲線C交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對應(yīng)的一個特征向量α1=
1
1
,特征值λ2=-1及其對應(yīng)的一個特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
以平面直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系(兩種坐標(biāo)系中取相同的單位長度),已知點A的直角坐標(biāo)為(-2,6),點B的極坐標(biāo)為(4,
π
2
)
,直線l過點A且傾斜角為
π
4
,圓C以點B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 選做題(在A、B、C、D四小題中只能選做兩題,并將選作標(biāo)記用2B鉛筆涂黑,每小題10分,共20分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟).
A、(選修4-1:幾何證明選講)
如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
B、(選修4-2:矩形與變換)
已知a,b實數(shù),如果矩陣M=
1a
b2
所對應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
C、(選修4-4,:坐標(biāo)系與參數(shù)方程)
設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的動點,判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
D、(選修4-5:不等式選講)
設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過圓O外一點P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點使得BC=5,求線段AB的長.
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣
2
2
-
2
2
2
2
2
2
對應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1
x=3cosθ
y=2sinθ
(θ為參數(shù))和曲線C2:ρsin(θ-
π
4
)=
2

(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<
c
4
,|y-b|<
c
6
,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

同步練習(xí)冊答案