(本小題滿分12分)
設雙曲線
與直線
交于兩個不同的點
,求雙曲線
的離心率
的取值范圍.
。
試題分析:由
與
相交于兩個不同的點,可知方程組
有兩組不同的解,
消去
,并整理得
解得
,
而雙曲線
的離心率
=
, 從而
,
故雙曲線
的離心率
的取值范圍為
。
點評:此題是易錯題。出錯的主要地方是:把直線與雙曲線方程聯(lián)立消去y,在限制a的范圍是只利用判別式大于0而忽略了方程二次項系數(shù)不等于0。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線的右焦點F(2,0),設A,B為雙曲線上關于原點對稱的兩點,以AB為直徑的圓過點F,直線AB的斜率為
,則雙曲線的的離心率為( )
A. | B. | C.4 | D.2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若雙曲線
的離心率為
,則雙曲線的漸近線方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知雙曲線C與橢圓
有相同的焦點,實半軸長為
.
(Ⅰ)求雙曲線
的方程;
(Ⅱ)若直線
與雙曲線
有兩個不同的交點
和
,且
(其中
為原點),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設雙曲線的—個焦點為F,虛軸的—個端點為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)直線
與雙曲線
相交于
兩點,
(1)求
的取值范圍
(2)當
為何值時,以
為直徑的圓過坐標原點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
以直線
為漸近線,一個焦點坐標為
的雙曲線方程是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設雙曲線的—個焦點為
;虛軸的—個端點為
,如果直線
與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的漸近線方程為
,則實數(shù)m的值等于( )
查看答案和解析>>