【題目】已知函數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為(2)
【解析】
(1)將代入函數(shù)的解析式,求出該函數(shù)的定義域和導(dǎo)數(shù),然后分別解不等式和,即可得出該函數(shù)的減區(qū)間和增區(qū)間;
(2)由題意得出不等式對任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析出函數(shù)在區(qū)間上的單調(diào)性,得出該函數(shù)的最大值,結(jié)合,可求出實數(shù)的取值范圍.
(1)當(dāng)時,,其定義域為,
則,當(dāng)時,當(dāng)時,
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為;
(2)不等式,即,即,
由題可知在上恒成立,
令,則,
令,則,
①若,則,函數(shù)在上單調(diào)遞增,
所以,則,不符合題意;
②若,則當(dāng)時,函數(shù)在上單調(diào)遞增,
所以當(dāng)時,,則,不符合題意;
③若,則在上恒成立,函數(shù)在上單調(diào)遞減,
所以,所以,符合題意.
綜上,,故實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程及曲線的直角坐標(biāo)方程,并指出兩曲線的軌跡圖形;
(2)曲線與兩坐標(biāo)軸的交點分別為、,點在曲線上運動,當(dāng)曲線與曲線相切時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知, .
(1)若綠化區(qū)域的面積為1,求道路的長度;
(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)(),當(dāng)為何值時,該計劃所需總費用最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5: 不等式選講
已知函數(shù)f(x)= 的定義域為R.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足 =n時,求7a+4b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣有兩個極值點.
(1)求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的兩個極值點分別為x1,x2,求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題的是( )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.
B.平行于同一平面的兩條直線一定平行.
C.如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面.
D.若直線不平行于平面,且不在平面內(nèi),則在平面內(nèi)不存在與平行的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓:的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線:與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過, ,且圓心在直線上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線垂直且與圓相切的直線方程.
(Ⅲ)若點為圓上任意點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗.
(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來自互不相鄰的三天),求的分布列及期望:
(2)根據(jù)12月2日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?
附:參考公式:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com