1.已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知a,b∈R,當(dāng)$0<x<\frac{1}{2}$時(shí),不等式f(x)+3<2x+a恒成立的a的集合記為A;當(dāng)x∈[-2,2]時(shí),使g(x)=f(x)-bx是單調(diào)函數(shù)的b的集合記為B.求A∩∁RB(R為全集).

分析 (1)令x=-1,y=1,利用f(x+y)-f(y)=x(x+2y+1),即可求得f(0)的值;
(2)令y=0,則f(x)-f(0)=x(x+1),結(jié)合f(0)=-2,可求f(x)的解析式;
(3)根據(jù)題意,將f(x)+3<2x+a變形可得x2-x+1<a,分析x2-x+1的最大值,可得a的范圍,即集合A;由(2)可得g(x)的解析式,結(jié)合二次函數(shù)的性質(zhì)可得b的取值范圍,即可得集合B,進(jìn)而可得CRB;從而可求A∩CRB.

解答 解:(1)根據(jù)題意,在f(x+y)-f(y)=x(x+2y+1)中,
令x=-1,y=1,可得f(0)-f(1)=-1(-1+2+1),
又由f(1)=0,則有f(0)=-2;
(2)在f(x+y)-f(y)=x(x+2y+1)中,
令y=0,則f(x)-f(0)=x(x+1)
又由f(0)=-2,則f(x)=x2+x-2;
(3)不等式f(x)+3<2x+a,等價(jià)于x2+x-2+3<2x+a,即x2-x+1<a,
若不等式f(x)+3<2x+a恒成立,則有x2-x+1<a恒成立,
又由$0<x<\frac{1}{2}$,則$\frac{3}{4}$<x2-x+1<1,必有a>1;
故A={a|a≥1};
g(x)=x2+x-2-ax=x2+(1-a)x-2,
若g(x)在[-2,2]上是單調(diào)函數(shù),必有$\frac{a-1}{2}$≤-2或$\frac{a-1}{2}$≥2成立,
解可得a≤-3,或a≥5.
故B={a|a≤-3,或a≥5},則CRB={a|-3<a<5}
故A∩CRB={a|1≤a<5}.

點(diǎn)評(píng) 本題考查抽象函數(shù)的運(yùn)用,涉及二次函數(shù)的性質(zhì),此類問題一般用特殊值法分析,解題的關(guān)鍵是利用二次函數(shù)的性質(zhì)化簡(jiǎn)集合A,B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$f(n)=cos\frac{nπ}{4}({n∈{N^*}})$,則f(1)+f(2)+…+f(2015)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)•|x-a|.
(1)求f(x)的最小值;
(2)設(shè)h(x)=f(x)min,x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知e為自然對(duì)數(shù)的底數(shù),若方程|xlnx-ex+e|=mx在區(qū)間[$\frac{1}{e}$,e2]上有三個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是[e-$\frac{1}{e}$-2,e-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)•f(x2);
③f($\frac{{x}_{1}{+x}_{2}}{2}$)>$\frac{f{(x}_{1})+f{(x}_{2})}{2}$;
④$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}$>0;
⑤當(dāng)1<x1<x2時(shí)$\frac{f{(x}_{1})}{{x}_{1}-1}>\frac{f{(x}_{2})}{{x}_{2}-1}$;
當(dāng)f(x)=${(\frac{3}{2})}^{x}$時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是①④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在以下的類比推理中結(jié)論正確的是( 。
A.若a•3=b•3,則a=b類比推出 若a•0=b•0,則a=b
B.若(a+b)c=ac+bc類比推出 $\frac{a+b}{c}=\frac{a}{c}+\frac{c}$(c≠0)
C.若(a+b)c=ac+bc類比推出  (a•b)c=ac•bc
D.若(ab)n=anbn類比推出 (a+b)n=an+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x圖象上所有點(diǎn)向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到函數(shù)g (x)的圖象,則g(x)圖象的一個(gè)對(duì)稱中心是( 。
A.($\frac{π}{3}$,0)B.( $\frac{π}{4}$,0)C.(-$\frac{π}{12}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.過雙曲線${x^2}-\frac{y^2}{4}=1$的右支上的一點(diǎn)P作一直線l與兩漸近線交于A、B兩點(diǎn),其中P是AB的中點(diǎn);
(1)求雙曲線的漸近線方程;
(2)當(dāng)P坐標(biāo)為(x0,2)時(shí),求直線l的方程;
(3)求證:|OA|•|OB|是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圖中∠AOC+2∠BOC=π,|$\overrightarrow{OA}$|=|$\overrightarrow{OC}$|,BC∥OA,P為圖中的陰影中(含邊界)任意點(diǎn),并且$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OC}$,下列正確的是①③⑤
①0≤x+y≤1;
②|x|+|y|≤x2+y2;
③x2+y2≤2;
④存在無數(shù)個(gè)點(diǎn)P,使得x=-1;
⑤存在無數(shù)個(gè)點(diǎn)P,使得y=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案