【題目】已知函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)若,時(shí),恒成立,求m的取值范圍.

【答案】1;(2.

【解析】

(1)求出,求出切點(diǎn)處的導(dǎo)數(shù)值,即為切線的斜率,求出,由直線的點(diǎn)斜式方程可求出切線的方程.

(2)分為兩種情況進(jìn)行討論,,運(yùn)用導(dǎo)數(shù)求出當(dāng),三種情況下的的最值,從而可求出參數(shù)的取值范圍.

1)由,得,

所以.

所以曲線在點(diǎn)處的切線方程為,即.

2)當(dāng)時(shí),,則時(shí),恒成立.

當(dāng)時(shí),, 當(dāng)時(shí),恒成立;

當(dāng)時(shí),恒成立等價(jià)于.

,則,

設(shè),則,,,

所以上遞增,所以的值域?yàn)?/span>,

①當(dāng),即時(shí),,上的增函數(shù),

所以,符合條件;

②當(dāng),即時(shí),,上的減函數(shù),

所以當(dāng)時(shí),,不符合條件,舍去;

③當(dāng),即時(shí),存在,使,且時(shí),,此時(shí),不符合條件,舍去

綜上,所求的m的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種新型病毒的傳染能力很強(qiáng),給人們生產(chǎn)和生活帶來很大的影響,所以創(chuàng)新研發(fā)疫苗成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上這種新型冠狀病毒的疫苗的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:

研發(fā)費(fèi)用(百萬元)

2

3

6

10

13

14

銷量(萬盒)

1

1

2

2.5

4

4.5

1)根據(jù)上表中的數(shù)據(jù),建立關(guān)于的線性回歸方程(用分?jǐn)?shù)表示);

2)根據(jù)所求的回歸方程,估計(jì)當(dāng)研發(fā)費(fèi)用為1600萬元時(shí),銷售量為多少?

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)設(shè)直線與圓相交于,兩點(diǎn),求圓,處兩條切線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn)與直線相切,圓心的軌跡為曲線,過點(diǎn)做直線與曲線交于不同兩點(diǎn),三角形的垂心為點(diǎn).

1)求曲線的方程;

2)求證:點(diǎn)在一條定直線上,并求出這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱的側(cè)棱和底面垂直,且所有頂點(diǎn)都在球O的表面上,側(cè)面的面積為.給出下列四個結(jié)論:

①若的中點(diǎn)為E,則平面;

②若三棱柱的體積為,則到平面的距離為3;

③若,則球O的表面積為

④若,則球O體積的最小值為.

當(dāng)則所有正確結(jié)論的序號是( )

A.①④B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,點(diǎn)P的坐標(biāo)是,曲線C的方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線l經(jīng)過點(diǎn)P.

1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;

2)若直線l和曲線C相交于兩點(diǎn)AB,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊(duì)進(jìn)行排球比賽,采取五局三勝制(當(dāng)一隊(duì)贏得三場勝利時(shí),該隊(duì)獲勝,比賽結(jié)束).根據(jù)前期比賽成績可知在每一局比賽中,甲隊(duì)獲勝的概率為,乙隊(duì)獲勝的概率為.若前兩局中乙隊(duì)以領(lǐng)先,則下列說法中錯誤的是(

A.甲隊(duì)獲勝的概率為B.乙隊(duì)以獲勝的概率為

C.乙隊(duì)以三比一獲勝的概率為D.乙隊(duì)以獲勝的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若,求函數(shù)的單調(diào)區(qū)間與極值;

(2)若在區(qū)間上至少存在一點(diǎn),使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱中,平面平面,,點(diǎn)F為棱的中點(diǎn),點(diǎn)E為線段上的動點(diǎn).

1)求證:;

2)若直線與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案