【題目】調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見表:

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ai

29

28

30

19

31

28

30

28

32

31

30

31

29

29

31

32

40

30

32

30


(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中 是這20名工人年齡的平均數(shù)),求輸出的S值.

【答案】
(1)解:莖葉圖如下:


(2)解:這20名工人年齡的眾數(shù)為30,極差為40﹣19=21
(3)解:

年齡的平均數(shù)為: = =30.

模擬執(zhí)行程序,可得:S= [(19﹣30)2+3×(28﹣30)2+3×(29﹣30)2+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6


【解析】(1)根據(jù)畫莖葉圖的步驟,畫圖即可;(2)根據(jù)眾數(shù)和極差的定義,即可得出;(3)利用方差的計算公式,代入數(shù)據(jù),計算即可.
【考點精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識,掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少,以及對程序框圖的理解,了解程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知a+b=5,c= ,且4sin2 ﹣cos2C=
(1)求角C的大小;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0,它們所表示的曲線可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,△PAD為等邊三角形, ,AB⊥AD,AB∥CD,點M是PC的中點. (I)求證:MB∥平面PAD;
(II)求二面角P﹣BC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個對稱中心到它對稱軸的最近距離為
(1)求ω的值及f(x)的對稱軸方程;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB= ,BC=CD= ,AD=1.
(1)求異面直線AB、PC所成角的余弦值;
(2)點E是線段AB的中點,求二面角E﹣PC﹣D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y2=2px(p>0)與雙曲線C2 =1(a>0.b>0)有公共焦點F,且在第一象限的交點為P(3,2 ).
(1)求拋物線C1 , 雙曲線C2的方程;
(2)過點F且互相垂直的兩動直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點分別為G、H,探究直線GH是否過定點,若GH過定點,求出定點坐標;若直線GH不過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某休閑廣場中央有一個半徑為1(百米)的圓形花壇,現(xiàn)計劃在該花壇內(nèi)建造一條六邊形觀光步道,圍出一個由兩個全等的等腰梯形(梯形ABCF和梯形DEFC)構(gòu)成的六邊形ABCDEF區(qū)域,其中A、B、C、D、E、F都在圓周上,CF為圓的直徑(如圖).設(shè)∠AOF=θ,其中O為圓心.
(1)把六邊形ABCDEF的面積表示成關(guān)于θ的函數(shù)f(θ);
(2)當θ為何值時,可使得六邊形區(qū)域面積達到最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某人在M汽車站的北偏西20°的方向上的A處,觀察到點C處有一輛汽車沿公路向M站行駛,公路的走向是M站的北偏東40°,開始時,汽車到A的距離為31千米,汽車前進20千米后,到A的距離縮短了10千米.問汽車還需行駛多遠,才能到達M汽車站?

查看答案和解析>>

同步練習冊答案