已知函數(shù)的定義域為,且. 設(shè)點(diǎn)是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)分別作直線軸的垂線,垂足分別為

    (1)求的值;

    (2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;

(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.

(1).(2)有,即為定值,這個值為1.

(3)四邊形面積有最小值


解析:

(1)∵ ,∴ .                     

(2)設(shè)點(diǎn)的坐標(biāo)為,則有

,                                               

 由點(diǎn)到直線的距離公式可知:,         

 故有,即為定值,這個值為1.         

 (3)由題意可設(shè),可知.

  ∵ 與直線垂直,∴ ,即 ,

解得 ,又,∴ .

  ∴, ,                                     

   ∴ ,     

   當(dāng)且僅當(dāng)時,等號成立.

   ∴ 此時四邊形面積有最小值.                     

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的定義域為(0,+∞),且單調(diào)遞增,滿足f(4)=1,f(xy)=f(x)+f(y).
(Ⅰ)證明:f(1)=0;
(Ⅱ)若f(x)+f(x-3)≤1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的定義域為R,對任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當(dāng)x>0時,f(x)>0.
(I)試判斷并證明f(x)的奇偶性;
(II)試判斷并證明f(x)的單調(diào)性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0對所有的θ∈[0,
π2
]
均成立,求實數(shù)m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市七校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的定義域為

(1)求;

(2)若,且的真子集,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆遼寧朝陽高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域為,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。

0

下列關(guān)于函數(shù)的命題:

①函數(shù)上是減函數(shù);②如果當(dāng)時,最大值是,那么的最大值為;③函數(shù)個零點(diǎn),則;④已知的一個單調(diào)遞減區(qū)間,則的最大值為。

其中真命題的個數(shù)是(           )

A、4個    B、3個  C、2個  D、1個

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題

已知函數(shù)的定義域為,且,的導(dǎo)函數(shù),函數(shù)的圖象如圖所示.若正數(shù),滿足,則的取值范圍是

    A.    B.  C.    D.

 

查看答案和解析>>

同步練習(xí)冊答案