分析 求出an的表達式,利用裂項消項法求解數(shù)列的前n項和.
解答 解:由題意得,an=$\frac{1}{1+2+3+…+n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
所以數(shù)列{an}的前n項和Sn=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)]
=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$,
故答案為:$\frac{2n}{n+1}$
點評 本題考查裂項相消法求數(shù)列的前n項和,注意解題的規(guī)律.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<λ1<λ2 | B. | 0<λ2<λ1 | C. | λ1<λ2<0 | D. | λ2<λ1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等差數(shù)列 | B. | 遞減的等比數(shù)列 | C. | 遞增的等比數(shù)列 | D. | 不是等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{2\sqrt{2016}}}$ | B. | $-\frac{1}{{2\sqrt{2016}}}$ | C. | $\frac{2016}{{\sqrt{2016}}}$ | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com