已知雙曲線
x2
a2
-
y2
b2
=1
的離心率e∈[
2
,2].雙曲線的兩條漸近線構(gòu)成的角中,以實(shí)軸為角平分線的角記為θ,則θ的取值范圍是( 。
A、[
π
6
,
π
2
]
B、[
π
3
,
π
2
]
C、[
π
2
,
3
]
D、[
3
,π]
分析:利用離心率的范圍進(jìn)而求得a和c不等式關(guān)系,進(jìn)而利用a,b和c的關(guān)系求得a和b的不等式關(guān)系,進(jìn)而求得漸近線斜率k的范圍,利用
k=tan
θ
2
確定tan
θ
2
的范圍,進(jìn)而確定θ的范圍.
解答:解:根據(jù)定義e=
c
a
=
a2+b2
a

e∈[
2
,2].
3
3
b≤a≤b
而漸近線的斜率k=
b
a
所以1≤k≤
3

所以45°≤
θ
2
≤60°
所以 90°≤θ≤120°,即[
π
2
,
3
]
;
故選C
點(diǎn)評:本題主要考查了雙曲線的簡單性質(zhì).考查了學(xué)生對平面解析幾何知識的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點(diǎn)
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案