10.橢圓$\frac{x^2}{{4{a^2}}}+\frac{y^2}{{3{a^2}}}=1$(a>0)的左焦點(diǎn)為F,直線x=m與橢圓相交于點(diǎn)A、B,則△FAB的周長(zhǎng)的最大值是8a.

分析 設(shè)橢圓的右焦點(diǎn)為M,則△FAB的周長(zhǎng)AF+FB+AB≤FA+AM+FB+BM=8a即可.

解答 解:如圖,設(shè)橢圓的右焦點(diǎn)為M,由橢圓的方程得橢圓的長(zhǎng)軸為2×2a=4a,
△FAB的周長(zhǎng)AF+FB+AB≤FA+AM+FB+BM=2×2a+2×2a=8a,
故答案為:8a

點(diǎn)評(píng) 本題考查了橢圓的方程、性質(zhì)、焦點(diǎn)三角形,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$(x+1){(x+\frac{a}{x})^6}$的展開式中,常數(shù)項(xiàng)為20,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等比數(shù)列{an}中,已知a4=8a1,且a1,a2+1,a3成等差數(shù)列.則{an}的前5項(xiàng)和為( 。
A.31B.62C.64D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$|{\vec a}|=3,|{\vec b}|=4$,且$({2\vec a-\vec b})•({\vec a+2\vec b})≥4$,求$\vec a$與$\vec b$的夾角θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}滿足a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),則a1•a2•a3…a2017=( 。
A.-6B.6C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若函數(shù)y=f(x)對(duì)定義域的每一個(gè)值x1,在其定義域均存在唯一的x2,滿足f(x1)f(x2)=1,則稱該函數(shù)為“依賴函數(shù)”.
(1)判斷$y=\frac{1}{x^2}$,y=2x是否為“依賴函數(shù)”;
(2)若函數(shù)y=a+sinx(a>1),$x∈[-\frac{π}{2},\frac{π}{2}]$為依賴函數(shù),求a的值,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,PA⊥平面ABCD,矩形ABCD的邊長(zhǎng)AB=1,BC=2,E為BC的中點(diǎn).
(1)證明:PE⊥DE;
(2)已知PE=$\sqrt{6}$,求A到平面PED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)$f(x)=\left\{\begin{array}{l}{a^x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$在(-∞,+∞)上單調(diào)遞增,則的取值范圍是( 。
A.[4,8)B.(1,+∞)C.(4,8)D.(1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.隨機(jī)變量ξ的分布列如下,且滿足E(ξ)=2,則E(aξ+b)的值( 。
ξ123
Pabc
A.0B.1
C.2D.無法確定,與a,b有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案