已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點G,使EG∥平面PFD,當(dāng)PA=AB=4時,求四面體E-GFD的體積.
(Ⅰ)由矩形ABCD中,AD=2AB,點F是BC的中點,得到平面;
(II)過作交于,即為所求. 。
解析試題分析:(Ⅰ)在矩形ABCD中,因為AD=2AB,點F是BC的中點,
所以平面 6分
(II)再過作交于,所以平面,且 10分
所以平面平面,所以平面,點即為所求.
因為,則,AG=1
12分
考點:本題主要考查立體幾何中的平行關(guān)系、幾何體體積的計算。
點評:簡單題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。利用向量可簡化證明過程。(II)利用了“等積法”。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,底面△為正三角形的直三棱柱中,,,是的中點,點在平面內(nèi),.
(Ⅰ)求證:;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角中.
(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選修4-1:幾何證明選講
如圖,在等腰梯形ABCD中,對角線AC⊥BD,且相交于點O ,E是AB邊的中點,EO的延長線交CD于F.
(1)求證:EF⊥CD;
(2)若∠ABD=30°,求證
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形與梯形所在的平面互相垂直,,∥,,點在線段上.
(I)當(dāng)點為中點時,求證:∥平面;
(II)當(dāng)平面與平面所成銳二面角的余弦值為時,求三棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)如圖1,在三棱錐P—ABC中,平面ABC,,D為側(cè)棱PC上一點,它的正(主)視圖和側(cè)(左)視圖如圖2所示。
(1)證明:平面PBC;
(2)求三棱錐D—ABC的體積;
(3)在的平分線上確定一點Q,使得平面ABD,并求此時PQ的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖4,在三棱柱中,△是邊長為的等邊三角形,
平面,,分別是,的中點.
(1)求證:∥平面;
(2)若為上的動點,當(dāng)與平面所成最大角的正切值為時,
求平面 與平面所成二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD
(1)求證:AB⊥平面PBC
(2)求三棱錐C-ADP的體積
(3)在棱PB上是否存在點M使CM∥平面PAD?
若存在,求的值。若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com