(12分)已知四棱錐 的底面是直角梯形, ∥,,側(cè)面底面.

(Ⅰ)求證:

(Ⅱ)求二面角的正切值.

解析:(Ⅰ)取BC的中點(diǎn)H,連結(jié)PH, 連結(jié)AH交BD于E.

.    ……………………………2分

又面,.

  ,.

,.

,即.        ………………………………………………4分

因?yàn)锳H為PA在平面上的射影,.   ……………………………6分

(Ⅱ)連結(jié)PE,則由(Ⅰ)知.

為所求二面角的平面角.       ……………………………………………8分

中,由,求得.

.

即所求二面角的正切值為.     …………………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知四棱錐的底面是矩形,側(cè)棱長(zhǎng)相等,棱錐的高為4,其俯視圖如圖所示.
(1)作出此四棱錐的正視圖和側(cè)視圖,并在圖中標(biāo)出相關(guān)的數(shù)據(jù);
(2)求該四棱錐的側(cè)面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡市質(zhì)檢文)(12分)如圖已知四棱錐的底面是正方形,, ,點(diǎn)、分別在棱上,且

⑴求證:;

⑵求二面角的大小;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐的底面是正方形,⊥底面,且,點(diǎn)、分別在側(cè)棱、上,且 

(Ⅰ)求證:⊥平面;

(Ⅱ)若,求平面與平面的所成銳二面角的大小 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市青浦區(qū)高考一模(即期末)數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分6分.

如圖已知四棱錐的底面是邊長(zhǎng)為6的正方形,側(cè)棱的長(zhǎng)為8,且垂直于底面,點(diǎn)分別是的中點(diǎn).求

(1)異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示);

(2)四棱錐的表面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年重慶市高三考前第一次模擬考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分13分 )

已知四棱錐的底面是邊長(zhǎng)為2的正方形,

分別為的中點(diǎn),

(Ⅰ)求直線與面所成角的正弦值;

(Ⅱ)求二面角的正切值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案