某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.

(1)求的值;
(2)分別求出甲、乙兩組數(shù)據(jù)的方差
并由此分析兩組技工的加工水平;
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢測,若兩人加工的合格零件數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
(注:方差為數(shù)據(jù)的平均數(shù))

(1);(2);(3).

解析試題分析:(1)由題意根據(jù)平均數(shù)的計算公式分別求出的值;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件數(shù)的方差,再根據(jù)它們的平均值相等,可得方差較小的發(fā)揮更穩(wěn)定一些;
(3)用列舉法求得所有的基本事件的個數(shù),找出其中滿足該車間“質(zhì)量合格”的基本事件的個數(shù),即可求得該車間“質(zhì)量合格”的概率.
試題解析:解:(1)由題意得,解得,
再由,解得;
(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件數(shù)的方差:
,

并由,可得兩組技工水平基本相當,乙組更穩(wěn)定些.
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢查,設(shè)兩人加工的合格零件數(shù)分別為,則所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、
(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共計25個,
而滿足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共計5個基本事件,
故滿足的基本事件個數(shù)為,
所以該車間“質(zhì)量合格”的概率為.
考點:1、古典概型及其概率計算公式;2、平均數(shù)與方差.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

從1,2,3,4這四個數(shù)中一次隨機取兩個數(shù),則其中一個數(shù)是另一個的兩倍的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若隨機變量X服從兩點分布,且成功概率為0.7;隨機變量Y服從二項分布,且Y~B(10,0.8),則EX,DX,EY,DY分別是................,........,.........

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋中裝有編號為的球個,編號為的球個,這些球的大小完全一樣。
(1)從中任意取出四個,求剩下的四個球都是號球的概率;
(2)從中任意取出三個,記為這三個球的編號之和,求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個袋中裝有大小相同的黑球和白球共9個,從中任取2個球,記隨機變量為取出2球中白球的個數(shù),已知
(Ⅰ)求袋中白球的個數(shù);
(Ⅱ)求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

(1)若某位顧客消費128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校舉行綜合知識大獎賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進行,每位選手最多有6次答題的機會,選手累計答對4題或答錯3題即終止其初賽的比賽,答對4題者直接進入決賽,答錯3題者則被淘汰.已知選手甲答題連續(xù)兩次答錯的概率為(已知甲回答每道題的正確率相同,并且相互之間沒有影響).
(Ⅰ)求選手甲回答一個問題的正確率;
(Ⅱ)求選手甲可以進入決賽的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

同時拋擲4枚均勻的硬幣80次,設(shè)4枚硬幣正好出現(xiàn)2枚正面向上,2枚反面向上的次數(shù)為.
(1)求拋擲4枚硬幣,恰好2枚正面向上,2枚反面向上的概率;
(2)求的數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學從中任取3道題解答.
(1)求張同學至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學答對題的個數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案