【題目】如圖,已知過(guò)原點(diǎn)O的直線(xiàn)與函數(shù)的圖象交于A,B兩點(diǎn),分別過(guò)A,B作y軸的平行線(xiàn)與函數(shù)圖象交于C,D兩點(diǎn),若軸,則四邊形ABCD的面積為_____.
【答案】
【解析】
分析:設(shè)出A、B的坐標(biāo),求出OA、OB的斜率相等利用三點(diǎn)共線(xiàn)得出A、B的坐標(biāo)之間的關(guān)系.再根據(jù)BC平行x軸,B、C縱坐標(biāo)相等,推出橫坐標(biāo)的關(guān)系,結(jié)合之前得出A、B的坐標(biāo)之間的關(guān)系即可求出A的坐標(biāo),從而解出B、C、D的坐標(biāo),最后利用梯形的面積公式求解即可.
詳解:設(shè)點(diǎn)A、B的橫坐標(biāo)分別為x1、x2由題設(shè)知,x1>1,x2>1.
則點(diǎn)A、B縱坐標(biāo)分別為log8x1、log8x2.
因?yàn)?/span>A、B在過(guò)點(diǎn)O的直線(xiàn)上,所以
點(diǎn)C、D坐標(biāo)分別為(x1,log2x1),(x2,log2x2).
由于BC平行于x軸知log2x1=log8x2,即得log2x1=log2x2,∴x2=x13.
代入x2log8x1=x1log8x2得x13log8x1=3x1log8x1.
由于x1>1知log8x1≠0,∴x13=3x1.考慮x1>1解得x1=.
于是點(diǎn)A的坐標(biāo)為(,log8)即A(,log23)
∴B(3,log23),C(,log23),D(3,log23).
∴梯形ABCD的面積為S=(AC+BD)×BC=( log23+log23)×2=log23.
故答案為:log23
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)為F1 , F2 , 離心率為 ,點(diǎn)A,B在橢圓上,F(xiàn)1在線(xiàn)段AB上,且△ABF2的周長(zhǎng)等于4 .
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)圓O:x2+y2=4上任意一點(diǎn)P作橢圓C的兩條切線(xiàn)PM和PN與圓O交于點(diǎn)M,N,求△PMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的多面體中,平面,平面,,且,是的中點(diǎn).
()求證:.
()若為線(xiàn)段上一點(diǎn),且,求證:平面.
()在棱上是否存在一點(diǎn),使得直線(xiàn)與平面所成的角為.若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知底面,,,,,異面直線(xiàn)和所成角等于.
(1)求直線(xiàn)和平面所成角的正弦值;
(2)在棱上是否存在一點(diǎn),使得平面與平面所成銳二面角的正切值為?若存在,指出點(diǎn)在棱上的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列{}的前n項(xiàng)和Sn=2-2.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)若bn=log,Sn=b1+b2+…+bn,對(duì)任意正整數(shù)n,Sn+(n+m)<0恒成立,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若對(duì)任意的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,的最大值是,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像兩相鄰對(duì)稱(chēng)軸之間的距離是,若將的圖像先向右平移個(gè)單位,再向上平移個(gè)單位,所得函數(shù)為奇函數(shù).
(1)求的解析式;
(2)求的對(duì)稱(chēng)軸及單調(diào)區(qū)間;
(3)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若數(shù)列的前項(xiàng)和, ,求證:數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com