設(shè)橢圓的左、右頂點(diǎn)分別為、,點(diǎn)在橢圓上且異于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線與的斜率之積為,求橢圓的離心率;
(2)對(duì)于由(1)得到的橢圓,過點(diǎn)的直線交軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.
(1) .
(2) 的斜率.
【解析】試題分析:(1)先求出A,B的坐標(biāo),然后利用與的斜率之積為,建立關(guān)于a的方程,從而求出a值,進(jìn)一步可求出橢圓的離心率.
(2)設(shè)直線 的斜率為 , 直線的方程為,則有,
設(shè),由于三點(diǎn)共線,且,
再把此條件坐標(biāo)可知,從而得到或,
再利用點(diǎn)P在橢圓上,可建立關(guān)于k的方程求出k的值.
解:(1) 由已知,設(shè). …………1分
則直線的斜率,
直線的斜率.
由,得. …………2分
…………3分
,得, …………4分
. …………5分
橢圓的離心率. …………6分
(2) 由題意知直線的斜率存在. …………7分
設(shè)直線 的斜率為 , 直線的方程為 …………8分
則有,
設(shè),由于三點(diǎn)共線,且
根據(jù)題意,得 …………9分
解得或 …………11分
又點(diǎn)在橢圓上,又由(1)知橢圓的方程為
所以…………①
或 …………②
由①解得,即,
此時(shí)點(diǎn)與橢圓左端點(diǎn)重合, 舍去; …………12分
由②解得,即 …………13分
直線直線的斜率. …………14分
考點(diǎn):本小題主要考查直線斜率、橢圓的方程、離心率、向量的運(yùn)算等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化、方程的思想方法,考查綜合運(yùn)用能力以及運(yùn)算求解能力.
點(diǎn)評(píng):兩點(diǎn)的斜率公式;另外解本小題的關(guān)鍵是條件的使用,實(shí)際上此條件是用k表示出點(diǎn)P的坐標(biāo),再根據(jù)點(diǎn)P在橢圓上,建立關(guān)于k的方程求出k值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
4 |
F1M |
F2N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓=1(a>b>0),其右準(zhǔn)線l與x軸交于點(diǎn)A,橢圓的上頂點(diǎn)為B,過它的右焦點(diǎn)F且垂直于長(zhǎng)軸的直線交橢圓于點(diǎn)P,直線AB恰經(jīng)過線段FP的中點(diǎn)D.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別是A1、A2,且=-3,求橢圓方程;
(Ⅲ)在(Ⅱ)的條件下,設(shè)Q是橢圓右準(zhǔn)線l上異于A的任意一點(diǎn),直線QA1、QA2與橢圓的另一個(gè)交點(diǎn)分別為M、N,求證:直線MN與x軸交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
已知橢圓的焦點(diǎn)在軸上,中心在原點(diǎn),離心率,直線和以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為、,點(diǎn)是橢圓上異于、的任意一點(diǎn),設(shè)直線、的斜率分別為、,證明為定值;
(Ⅲ)設(shè)橢圓方程,、為長(zhǎng)軸兩個(gè)端點(diǎn), 為橢圓上異于、的點(diǎn), 、分別為直線、的斜率,利用上面(Ⅱ)的結(jié)論得( )(只需直接寫出結(jié)果即可,不必寫出推理過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
.(2012年高考天津卷理科19)(本小題滿分14分)設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)P在橢圓上且異于
兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明:直線的斜率滿足.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com