(08年莆田四中二模理)(12分)已知,如圖四棱錐中,底面是平行四邊形,,垂足上,且,,,的中點(diǎn).

(1)求異面直線所成的角;

(2)求點(diǎn)到平面的距離;

(3)若點(diǎn)是棱上一點(diǎn),且,求的值.

解析:解法一:(1)在平面內(nèi),過點(diǎn)作,連結(jié),

(或其補(bǔ)角)就是異面直線所成的角.

中,,

由余弦定理得,=

∴異面直線所成的角為arccos

(2)∵平面,平面∴平面⊥平面

在平面內(nèi),過,交延長線于,則⊥平面

的長就是點(diǎn)到平面的距離

,∴點(diǎn)到平面的距離為

(3)在平面內(nèi),過,為垂足,連結(jié),又因?yàn)?IMG height=19 src='http://thumb.zyjl.cn/pic1/img/20090422/20090422113834032.gif' width=69>

平面, ∴

 

由平面⊥平面,∴⊥平面 ∴

得:

解法二:(1)由已知

如圖所示,以G點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系o―xyz,則

,,

∴異面直線所成的角為arccos  4分

(2)平面PBG的單位法向量

∴點(diǎn)到平面的距離為  ------------- 8分

(3)設(shè)

在平面內(nèi)過點(diǎn)作,為垂足,則     -------------   12分

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中二模理)(14分)已知函數(shù)圖象上的兩點(diǎn),橫坐標(biāo)為的點(diǎn)滿足為坐標(biāo)原點(diǎn))。

(1)求證:為定值;

(2)若

①求

②若其中為數(shù)列的前n項(xiàng)和,若對一切都成立,試求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中二模理)(12分)設(shè)函數(shù)

。

(1)求的值;

(2)不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中二模文)(12分)如圖,在四棱錐中,

底面為直角梯形,,,⊥平面,,.

(1)求證:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中二模文)(12分)已知:數(shù)列是首項(xiàng)為1的等差數(shù)列,

且公差不為零。而等比數(shù)列的前三項(xiàng)分別是

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求正整數(shù)的值。

查看答案和解析>>

同步練習(xí)冊答案