【題目】已知點P在直線l:y=x-1,若存在過點P的直線交拋物線A,B兩點,|PA|=|AB|,則稱點P為“正點”,那么下列結論中正確的是( )

A.直線l上的所有點都是“正點”

B.直線l上僅有有限個點是“正點”

C.直線l上的所有點都不是“正點”

D.直線l上有無窮多個點(但不是所有的點)是“正點”

【答案】A

【解析】

根據(jù)題意,設出A,P的坐標,進而B的坐標可表示出,把A,B的坐標代入拋物線方程聯(lián)立消去y,求得判別式大于0恒成立,可推斷出方程有解,進而可推斷出直線l上的所有點都符合.

如下圖:

根據(jù)題意,設A(m,n),P(x0,x0-1), 已知|PA|=|AB| ,則B(2m-x0,2n-x0+1),

∵點A,B在y=x2上,∴.

∴消去n,整理得關于x0的方程為

∵△=(4m-1)2-4(2m2-1)=8m2-8m+5>0恒成立,即方程恒有實數(shù)解,故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:

(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質量指數(shù)是檢測空氣質量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴重,空氣質量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )

A. 該地區(qū)在該月2日空氣質量最好

B. 該地區(qū)在該月24日空氣質量最差

C. 該地區(qū)從該月7日到12日持續(xù)增大

D. 該地區(qū)的空氣質量指數(shù)與這段日期成負相關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,(常數(shù)).

(I)當的圖象相切時,求的值;

(Ⅱ)設,討論上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線有且只有一個公共點.

(1)求實數(shù)的值;

(2)已知點的直角坐標為,若曲線為參數(shù))相交于,兩個不同點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為,為參數(shù))

1)求曲線的直角坐標方程;

2)設直線與曲線交于、兩點,點的直角坐標為,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次高中學科競賽中,4000名考生的參賽成績統(tǒng)計如圖所示,60分以下視為不及格,若同一組中數(shù)據(jù)用該組區(qū)間中點作代表,則下列說法中有誤的是(

A. 成績在分的考生人數(shù)最多

B. 不及格的考生人數(shù)為1000人

C. 考生競賽成績的平均分約70.5分

D. 考生競賽成績的中位數(shù)為75分

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱錐中,側棱長為3,底面邊長為2,E,F分別為棱AB,CD的中點,則下列命題正確的是( )

A.EFAD所成角的正切值為B.EFAD所成角的正切值為

C.AB與面ACD所成角的余弦值為D.AB與面ACD所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象與函數(shù)的圖象關于直線對稱,則關于函數(shù)以下說法正確的是( )

A. 最大值為1,圖象關于直線對稱B. 上單調遞減,為奇函數(shù)

C. 上單調遞增,為偶函數(shù)D. 周期為,圖象關于點對稱

查看答案和解析>>

同步練習冊答案