(本題滿分15分)本題文科做.

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為

(1)若方程有兩個(gè)相等的實(shí)數(shù)根, 求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

 

【答案】

【解析】第一問(wèn)利用

  所以 

然后由方程 

因?yàn)榉匠挞谟袃蓚(gè)相等的根,所以得到。

第二問(wèn),由

 

 解得

 

解:(1)

  所以          …………………………2分

由方程  ②   ……………………4分

因?yàn)榉匠挞谟袃蓚(gè)相等的根,所以,

即        ………………………6分

由于代入①得的解析式為

                         ……………………………8分

(若本題沒(méi)有舍去“”第一小問(wèn)得6分)

(2)由

          ……………………………12分

 解得

故當(dāng)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是 …15分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (本題滿分15分)17. (本小題滿分15分)已知圓C:,圓C關(guān)于直線對(duì)稱,圓心在第二象限,半徑為W ww.k s5 u.co m

(Ⅰ)求圓C的方程;

(Ⅱ)已知不過(guò)原點(diǎn)的直線與圓C相切,且在x軸、y軸上的截距相等,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (本題滿分15分)17. (本小題滿分15分)已知圓C:,圓C關(guān)于直線對(duì)稱,圓心在第二象限,半徑為。W ww.k s  5u.c om

(Ⅰ)求圓C的方程;

(Ⅱ)已知不過(guò)原點(diǎn)的直線與圓C相切,且在x軸、y軸上的截距相等,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (本題滿分15分)17. (本小題滿分15分)已知圓C:,圓C關(guān)于直線對(duì)稱,圓心在第二象限,半徑為W ww.k s5 u.co m

(Ⅰ)求圓C的方程;

(Ⅱ)已知不過(guò)原點(diǎn)的直線與圓C相切,且在x軸、y軸上的截距相等,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (本題滿分15分)17. (本小題滿分15分)已知圓C:,圓C關(guān)于直線對(duì)稱,圓心在第二象限,半徑為。W ww.k s  5u.c om

(Ⅰ)求圓C的方程;

(Ⅱ)已知不過(guò)原點(diǎn)的直線與圓C相切,且在x軸、y軸上的截距相等,求直線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案