【題目】已知圓Cx2y2+2x-4y+3=0.

(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.

(2)從圓C外一點P(x1y1)向該圓引一條切線,切點為MO為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).

【答案】(1) y=(2±)xxy+1=0或xy-3=0;(2)

【解析】

1)首先利用待定系數(shù)法設(shè)出切線的方程,然后利用圓心到切線的距離等于半徑求出切線方程;(2PM的距離用P到圓心C的距離與半徑來表示,建立PO與與PC的關(guān)系,求出P點的軌跡為一條直線,然后將求PM的最小值問題轉(zhuǎn)化為原點到直線的距離問題,

解:(1)將圓C整理得(x+1)2+(y-2)2=2.

①當(dāng)切線在兩坐標(biāo)軸上的截距為零時,設(shè)切線方程為ykx,

∴圓心到切線的距離為,即k2-4k-2=0,解得k=2±

y=(2±)x

②當(dāng)切線在兩坐標(biāo)軸上的截距不為零時,設(shè)切線方程為xya=0,

∴圓心到切線的距離為,即|a-1|=2,解得a=3或-1.

xy+1=0或xy-3=0.綜上所述,所求切線方程為y=(2±)xxy+1=0或xy-3=0.

(2)∵|PO|=|PM|,

=(x1+1)2+(y1-2)2-2,即2x1-4y1+3=0,即點P在直線l:2x-4y+3=0上.

當(dāng)|PM|取最小值時,即|OP|取得最小值,此時直線OPl,

∴直線OP的方程為:2xy=0,

解得方程組,

P點坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線x22py(p>0)的焦點,斜率為的直線交拋物線于A(x1,y1),B(x2y2)(x1<x2)兩點,且|AB|9.

(1)求該拋物線的方程;

(2)O為坐標(biāo)原點,C為拋物線上一點,若,λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊甲、乙兩名運(yùn)動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O為極點,x軸正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρ1-cos2θ=8cosθ,直線ρcosθ=1與曲線C相交于MN兩點,直線l過定點P2,0)且傾斜角為α,l交曲線CAB兩點.

1)把曲線C化成直角坐標(biāo)方程,并求|MN|的值;

2)若|PA|,|MN||PB|成等比數(shù)列,求直線l的傾斜角α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,左右頂點分別是,長軸長為,是以原點為圓心,為半徑的圓的任一條直徑,四邊形的面積最大值為.

(1)求橢圓的方程;

(2)不經(jīng)過原點的直線與橢圓交于、兩點,

①若直線的斜率分別為,,且,求證:直線過定點,并求出該定點的坐標(biāo);

②若直線的斜率是直線、斜率的等比中項,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù),已知復(fù)數(shù),其中均為實數(shù),為虛數(shù)單位,且對于任意復(fù)數(shù),有,將作為點的坐標(biāo),作為點的坐標(biāo),通過關(guān)系式,可以看作是坐標(biāo)平面上點的一個變換,它將平面上的點變到這個平面上的點.

1)分別寫出表示的關(guān)系式;

2)設(shè),當(dāng)點在圓上移動時,求證:點經(jīng)該變換后得到的點落在一個圓上,并求出該圓的方程;

3)求證:對于任意的常數(shù),總存在曲線,使得當(dāng)點上移動時,點經(jīng)這個變換后得到的點的軌跡是二次函數(shù)的圖像,并寫出對于正常數(shù),滿足條件的曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上動點與定點的距離和它到定直線的距離的比是常數(shù),若過的動直線與曲線相交于兩點

(1)說明曲線的形狀,并寫出其標(biāo)準(zhǔn)方程;

(2)是否存在與點不同的定點,使得恒成立?若存在,求出點的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。

A. 這15天日平均溫度的極差為

B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天

C. 由折線圖能預(yù)測16日溫度要低于

D. 由折線圖能預(yù)測本月溫度小于的天數(shù)少于溫度大于的天數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點分別在軸和軸上運(yùn)動,且,若動點

滿足,動點的軌跡為.

1)求的方程;

2)過點作動直線的平行線交軌跡兩點,則是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案