20.如圖,在矩形ABCD中,已知AD=1.5,AB=a(a>1.5),E,F(xiàn),G,H分別是邊AD,AB,BC,CD上的動(dòng)點(diǎn),且滿足AE=AF=CG=CH.若AE=x,當(dāng)x變化時(shí).
(1)求四邊形EFGH的面積S關(guān)于x的函數(shù)解析式,寫出其定義域.
(2)當(dāng)x取何值時(shí),S有最大值,并求出其最大值.

分析 (1)設(shè)AE=x,四邊形EFGH的面積為S,則S=1.5a-x2-(1.5-x)(a-x),x∈(0,1.5].
(2)化簡(jiǎn)并配方,可得函數(shù)的對(duì)稱軸,從而分類討論區(qū)間和對(duì)稱軸的關(guān)系,可求函數(shù)的最大值.

解答 解:設(shè)AE=x,四邊形EFGH的面積為S,
則S=1.5a-x2-(1.5-x)(a-x)
=-2x2+(a+1.5)x
=-2(x-$\frac{a+1.5}{4}$)2+$\frac{(a+1.5)^{2}}{8}$,x∈(0,1.5],
(1)若$\frac{a+1.5}{4}$≤1.5,即1.5<a≤4.5,
則當(dāng)x=$\frac{a+1.5}{4}$時(shí),S取得最大值是Smax=$\frac{(a+1.5)^{2}}{8}$;
(2)若$\frac{a+1.5}{4}$>1.5,即a>4.5,
函數(shù)S=-2x2+(a+1.5)x在區(qū)間(0,1.5]上是增函數(shù),
則當(dāng)x=1.5時(shí),S取得最大值是Smax=1.5a-2,25.
綜上可得EFGH的面積的最大值為$\left\{\begin{array}{l}{\frac{(a+1.5)^{2}}{8},1.5<a≤4.5}\\{1.5a-2.25,a>4.5}\end{array}\right.$.

點(diǎn)評(píng) 本題以實(shí)際問題為載體,考查二次函數(shù)模型的構(gòu)建,考查二次函數(shù)在閉區(qū)間上的最值討論,解題的關(guān)鍵是針對(duì)函數(shù)的定義域,結(jié)合函數(shù)的對(duì)稱軸分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)的定義域?yàn)閇-3,3],且f(x)是奇函數(shù),當(dāng)x∈[0,3]時(shí),f(x)=x(1-3x).
(1)求當(dāng)x∈[-3,0)時(shí),f(x)的解析式;
(2)解不等式f(x)<-8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合A={1,2},則下列正確的是(  )
A.1∈AB.1∉AC.{1}∈AD.1⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=${log_2}(4-{x^2})$的定義域?yàn)椋?2,2),值域?yàn)椋?∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=xlog2(x+a)的圖象過點(diǎn)(1,1).
(1)求實(shí)數(shù)a的值,并判斷函數(shù)f(x)的奇偶性;
(2)若f(x)≥t在[1,+∞)上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知關(guān)于x的不等式ax2+2x+b>0(a≠0)的解集是{x|x≠-$\frac{1}{a}$,x∈R},且a>b,則$\frac{{a}^{2}+^{2}}{a-b}$的最小值是( 。
A.2$\sqrt{2}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin2x+sin2x-1,x∈R.
(1)求f(x)的最小正周期;
(2)f(x)的最大值及取得最大值時(shí)x的集合;
(3)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若關(guān)于x的不等式x2+|x+a|<2至少有一個(gè)正數(shù)解,則實(shí)數(shù)a的取值范圍是(-$\frac{9}{4}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若1<x1<x2<3,則( 。
A.x1lnx2<x2lnx1B.x1lnx2>x2lnx1
C.x1e${\;}^{{x}_{2}}$<x2e${\;}^{{x}_{1}}$D.x1e${\;}^{{x}_{2}}$>x2e${\;}^{{x}_{1}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案