【題目】設(shè)數(shù)列的前n項和為,已知,,.

(1)證明:為等比數(shù)列,求出的通項公式;

(2)若,求的前n項和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.

【答案】(1)證明見解析,;(2)不存在,理由見解析.

【解析】

(1)根據(jù)等比數(shù)列的定義即可證明為等比數(shù)列,再根據(jù)的關(guān)系 ,即可求出的通項公式;

(2)根據(jù),可采取錯位相減法求出的前n項和,然后代入得,,構(gòu)造函數(shù)(),利用其單調(diào)性和零點存在性定理即可判斷是否存在.

(1)

,

因為,所以可推出

,即為等比數(shù)列.

,公比為2

,即,∵,當時,也滿足此式,

;

(2) 因為,

,兩式相減得:

,代入,得

(),成立,

為增函數(shù),

,所以不存在正整數(shù)n使得成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有兩個調(diào)查抽樣:(1)某班為了了解班級學(xué)生在家表現(xiàn)情況決定從10名家長中抽取3名參加座談會;(2)某研究部門在高考后從2000名學(xué)生(其中文科400名,理科1600名)中抽取200名考生作為樣本調(diào)查數(shù)學(xué)學(xué)科得分情況.

給出三種抽樣方法:Ⅰ.簡單隨機抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.

則問題(1)、(2)選擇的抽樣方法合理的是(

A.1)選,(2)選B.1)選,(2)選

C.1)選,(2)選D.1)選,(2)選

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知袋子中放有大小和形狀相同標號分別是01,2的小球若干,其中標號為0的小球1個,標號為1的小球2個,標號為2的小球n個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是

1)求n的值

2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的球標號為b

①記為事件A,求事件A的概率;

②在區(qū)間內(nèi)任取2個實數(shù)x,y,求事件恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標系中,點到拋物線的準線的距離為.上的定點,,上的兩動點,且線段的中點在直線.

1)求曲線的方程及點的坐標;

2)記,求弦長(用表示);并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)國家號召,某校組織部分學(xué)生參與了垃圾分類,從我做起的知識問卷作答,并將學(xué)生的作答結(jié)果分為合格不合格兩類與問卷的結(jié)果有關(guān)?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握認為性別問卷的結(jié)果有關(guān)?

2)在成績合格的學(xué)生中,利用性別進行分層抽樣,共選取9人進行座談,再從這9人中隨機抽取5人發(fā)送獎品,記拿到獎品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

(1)求證:上存在唯一零點;

(2)求證:有且僅有兩個不同的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019105日, 美國NBA火箭隊總經(jīng)理莫雷公開發(fā)布涉港錯誤言論,中國公司與明星紛紛站出來抵制火箭隊,隨后京東、天貓、淘寶等中國電商平臺全線下架了火箭隊的所有商品,當天有大量網(wǎng)友關(guān)注此事,某網(wǎng)上論壇從關(guān)注此事跟帖中,隨機抽取了100名網(wǎng)友進行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組:,,,,得到如圖所示的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為強烈關(guān)注,否則為一般關(guān)注,對這100名網(wǎng)友進一步統(tǒng)計得到列聯(lián)表的部分數(shù)據(jù)如下表:

一般關(guān)注

強烈關(guān)注

合計

60

5

40

合計

100

1)補全列聯(lián)表中數(shù)據(jù),并判斷能否有的把握認為網(wǎng)友對此事件是否為強烈關(guān)注與性別有關(guān)?

2)現(xiàn)已從男性網(wǎng)友中分層抽樣選取了6人,再從這6人中隨機選取2人,求這2人中至少有1人屬于強烈關(guān)注的概率.

附:,其中.

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓上的三個點,為坐標原點.

(1)所在的直線方程為,求的長;

(2)設(shè)為線段上一點,且,當中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將120202020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

同步練習(xí)冊答案