(12分)如圖,等邊與直角梯形垂直,,,
,.若分別為的中點(diǎn).

(1)求的值; (2)求面與面所成的二面角大小.

(1) ;
(2)面SCD與面SAB所成的二面角大小為.

解析試題分析:(1)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/e0/7/eedp74.png" style="vertical-align:middle;" />,然后再在中求值即可.
(2)利用空間向量法求二面角,要首先求出二面角兩個(gè)面的法向量然后轉(zhuǎn)化為兩個(gè)面的法向量的夾角求解.
(1)在正,面,
,,
中, 
 (也可用坐標(biāo)計(jì)算)………6分
(2)建立如圖所示的直角坐標(biāo)系

,,
設(shè)面SCD的法向量為
,由
不妨設(shè),,,面SAB的法向量為

面SCD與面SAB所成的二面角大小為.
考點(diǎn):空間幾何體的線線,線面,面面垂直的判定與性質(zhì),向量的運(yùn)算,二面角.
點(diǎn)評:(1)本小題在進(jìn)行向量運(yùn)算時(shí)用到的公式:若M為BC的中點(diǎn),則.
(2)在利用空間向量求二面角時(shí)首先求出兩個(gè)面的法向量,同時(shí)要注意法向量的夾角與二面角可能相等也可能互補(bǔ),要注意判斷準(zhǔn)確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖所示,在直棱柱中,,的中點(diǎn).

(1)求證:;
(2)求證:
(3)在上是否存在一點(diǎn),使得,若存在,試確定的位置,并判斷與平面是否垂直?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長方體中,,且

(I)求證:對任意,總有;
(II)若,求二面角的余弦值;
(III)是否存在,使得在平面上的射影平分?若存在, 求出的值, 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

幾何體的三視圖如圖,交于點(diǎn),分別是直線的中點(diǎn),

(I);
(II);
(Ⅲ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)用斜二測畫法作出邊長為3cm、高4cm的矩形的直觀圖.并求出直觀圖的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.

(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E—PC—A的正弦值.(本題滿分14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)正方體,E為棱的中點(diǎn).
(Ⅰ) 求證:;  (Ⅱ) 求證:平面
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

( 14分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到點(diǎn),且在平面BCD上的射影O恰好在CD上.
(Ⅰ)求證:;
(Ⅱ)求證:平面平面
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)長、寬、高分別為a、b、c長方體的體積是8cm2,它的全面積是32 cm2, 且滿足  b2=ac,求這個(gè)長方體所有棱長之和。

查看答案和解析>>

同步練習(xí)冊答案