17.如圖,DE是⊙O的直徑,過⊙O上的點C作直線AB,交ED的延長線于點B,且OA=OB,CA=CB,連結(jié)EC,CD.
(1)求證:直線AB是⊙O的切線;
(2)若tan∠CED=$\frac{1}{2}$,⊙O的半徑為3,求OA的長.

分析 (1)連接OC,證明:OC⊥AB,即可證明直線AB是⊙O的切線;
(2)△ECD中,tan∠CED=$\frac{1}{2}$,$\frac{BE}{BD}$=4,即可求OA的長.

解答 (1)證明:連接OC,
因為OA=OB,CA=CB,
所以O(shè)C⊥AB,
所以直線AB是⊙O的切線;
(2)解:∵直線AB是⊙O的切線,
∴∠E=∠BCD,
∵∠B=∠B,
∴△BEC∽△BCD,
∴$\frac{BC}{BD}$=$\frac{CE}{CD}$=$\frac{BE}{BC}$,
∴$(\frac{CE}{CD})^{2}$=$\frac{BE}{BD}$,
∵DE是⊙O的直徑,
∴EC⊥CD.
△ECD中,tan∠CED=$\frac{1}{2}$,∴$\frac{BE}{BD}$=4,
∴$\frac{BD+6}{BD}$=4,
∴BD=2,OA=5.

點評 本題考查圓的切線的證明,考查三角形相似的判定與性質(zhì),考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)是定義域為R的偶函數(shù),且f(x+2)=f(x),若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則( 。
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點為A,B為⊙O上一點,且BC∥PO.
(I)求證:PB為⊙O的切線
(Ⅱ)若⊙O的半徑為1,PA=3,求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$,且曲線f(x)在點(e,f(e))處的切線與直線y=e2x+e垂直(其中e為自然對數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上單調(diào),求實數(shù)m的取值范圍;
(2)設(shè)g(x)=(x+1)•f(x),求證:當x>1時,g(x)>$\frac{2(e+1){e}^{x}}{e(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是R上的奇函數(shù).
(1)求函數(shù)h(x)=xe2f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)g(x)=(λ+a)x-cosx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])是減函數(shù),且對任意實數(shù)λ都滿足g(x)≤λt-1,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知曲線C1的極坐標方程是ρ+4cosθ+$\frac{5}{2ρ}$=0.以極點O為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,在平面直角坐標系xOy中,曲線C2:x2+$\frac{{y}^{2}}{9}$=1
(Ⅰ)寫出C1的直角坐標方程和C2的參數(shù)方程;
(Ⅱ)設(shè)M,N分別為C1,C2的任意一點,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知曲線C的極坐標方程為ρ═4sin(θ-$\frac{π}{3}$),以極點為原點,極軸為x軸正半軸,建立平面直角坐標系xOy.
(1)求曲線C的直角坐標方程;
(2)若點P在曲線C上,點Q的直角坐標是(cosφ,sinφ),其中(φ∈R),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在棱長為2的正方體ABCD-A′B′C′D′中,E、F分別是A′B′和AB的中點.求:
(1)異面直線A′F與CE所成的角的大小(結(jié)果用反三角函數(shù)值表示);
(2)直線A′F與平面ABC′D′所成的角的大小.(結(jié)果用反三角函數(shù)值表示);
(3)二面角A-CE-F的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,F(xiàn)為BD中點,連接AF交CH于點E,
(Ⅰ)求證:FC是⊙O的切線;
(Ⅱ)若FB=FE,⊙O的半徑為$\sqrt{2}$,求FC.

查看答案和解析>>

同步練習冊答案