一直線過拋物線y2=2px(p>0)的焦點F,且交拋物線于A,B兩點,C為拋物線準(zhǔn)線的一點.
(1)求證:∠ACB不可能是鈍角;
(2)是否存在這樣的點C,使得△ABC為正三角形?若存在,請求出點C的坐標(biāo);若不存在,請說明理由.
解:設(shè)
直線AB方程為
,得:y2﹣2pty﹣p2=0,


,

不可能為鈍角,
故∠ACB不可能是鈍角
(2)假設(shè)存在點C,使得△ABC為正三角形
由(1)得:線段AB的中點為
①若直線AB的斜率不存在,這時t=0,,
點C的坐標(biāo)只可能是,
,得:,矛盾,
于是直線AB的斜率必存在.
②由CM⊥AB,得:kCMkAB=﹣1,
,
∴m=pt3+2pt,
,|AB|=2p(t2+1),
,得:,

故存在點,使得△ABC為正三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一直線過拋物線y2=2px(p>0)的焦點F,且交拋物線于A,B兩點,C為拋物線準(zhǔn)線的一點.
(1)求證:∠ACB不可能是鈍角;
(2)是否存在這樣的點C,使得△ABC為正三角形?若存在,請求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一直線過拋物線y2=2px(p>0)的焦點F,且交拋物線于A,B兩點,C為拋物線準(zhǔn)線的一點.
(1)求證:∠ACB不可能是鈍角;
(2)是否存在這樣的點C,使得△ABC為正三角形?若存在,請求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一直線過拋物線y2=2px(p>0)的焦點F,且交拋物線于A,B兩點,C為拋物線準(zhǔn)線的一點.
(1)求證:∠ACB不可能是鈍角;
(2)是否存在這樣的點C,使得△ABC為正三角形?若存在,請求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省中原名校高三(上)第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

一直線過拋物線y2=2px(p>0)的焦點F,且交拋物線于A,B兩點,C為拋物線準(zhǔn)線的一點.
(1)求證:∠ACB不可能是鈍角;
(2)是否存在這樣的點C,使得△ABC為正三角形?若存在,請求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案