(1)求動點P的軌跡C的方程;
(2)設(shè)M、N是直線l上的兩個點,點E是點F關(guān)于原點的對稱點,若
·
=0,
求 | MN | 的最小值。
(1)設(shè)點P(x,y)
依題意,有
=
整理得:
= 1
所以動點P的軌跡方程為
+
=1
(2)∵點E與點F關(guān)于原點對稱
∴E(-
,0
)
∵M(jìn)、N是l上的兩點
∴可設(shè)M(2
,y
1) N(2
,y
2)
(不妨設(shè),y
1>y
2)
∵
·
=0
∴(3
,y
1)·(
,y
2)=0
即6 + y
1y
2=0
∴y
2=-
由于y
1>y
2,∴y
1>0,y
2<0
∴| MN |=y(tǒng)
1-y
2=y(tǒng)
1 +
≥2
=2
當(dāng)且僅當(dāng)y
1=
,y
2=-
時,取“=”號,故| MN |的最小值為2
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
已知橢圓
的離心率為
,短軸的長為2.
(1)求橢圓
的標(biāo)準(zhǔn)方程
(2)若經(jīng)過點
的直線
與橢圓
交于
兩點,滿足
,求
的方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題14分)
已知直線
與橢圓
相交于
兩點,
為坐標(biāo)原點,
(1)求證:
;
(2)如果直線
向下平移1個單位得到直線
,試求橢圓截直線
所得線段的長度。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
本小題滿分14分)
已知橢圓
的左、右焦點分別為F
1、F
2,若以F
2為圓心,b-c為半徑作圓F
2,過橢圓上一點P作此圓的切線,切點為T,且
的最小值不小于
。
(1)證明
:橢圓上的點到F
2的最短距離為
;
(2)求橢圓的離心率e的取值范圍;
(3)設(shè)橢圓的短半軸長為1,圓F
2與
軸的右交點為Q,過點Q作斜率為
的直線
與橢圓相交于A、B兩點,若OA⊥OB,求直線
被圓F
2截得的弦長S的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分12分)
已知橢圓
與雙曲線
有共同的焦點F
1、F
2,設(shè)它們在第一象限的交點為P,且
(1)求橢圓的方程;
(2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為
的直線
,與橢圓交于不同的兩點A、B,點Q滿足
?若存在,求出
的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本題14分) 設(shè)直線
(其中
,
為整數(shù))與橢圓
交于不同兩點
,
,與雙曲線
交于不同兩點
,
,問是否存在直線
,使得向量
,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分
分)
已知橢圓
的中心在坐標(biāo)原點
,兩個焦點分別為
、
,一個頂點為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)對于
軸上的點
,橢圓
上存在點
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若
F(
c, 0)是橢圓
的右焦點,
F與橢圓上點的距離的最大值為
M,最小值為
m,則橢圓上與
F點的距離等于
的點的坐標(biāo)是 ( )
A.(c, ±) | B.(-c, ±) | C.(0, ±b) | D.不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若方程
表示焦點在
軸上的橢圓,則
的取值范圍是 ▲ .
查看答案和解析>>