【題目】已知直線與正切函數(shù)相鄰兩支曲線的交點(diǎn)的橫坐標(biāo)分別為, ,且有,假設(shè)函數(shù)的兩個(gè)不同的零點(diǎn)分別為, ,若在區(qū)間內(nèi)存在兩個(gè)不同的實(shí)數(shù), ,與, 調(diào)整順序后,構(gòu)成等差數(shù)列,則的值為( )
A. B. C. 或或不存在 D. 或
【答案】C
【解析】由題意及,可知,又, 得到,因此,令 , ,假設(shè)存在兩個(gè)不同的實(shí)數(shù),若使調(diào)整順序后能組合成等差數(shù)列,設(shè)公差為,則有下列情況:①若與相鄰,則,
,不能相鄰,否則,將超出范圍. ②若與之間間隔一個(gè)數(shù),設(shè)這個(gè)數(shù)為,則,經(jīng)分析,數(shù)列為時(shí),不成立,不妨設(shè)數(shù)列為,此時(shí),當(dāng)時(shí), ,不存在,當(dāng)時(shí), ,也不存在. ③若與之間間隔兩個(gè)數(shù),即組成一個(gè)等差數(shù)列, , , ,此時(shí),構(gòu)成等差數(shù)列,當(dāng)時(shí), ,當(dāng)時(shí), ,故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓,把圓上每一點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線,且傾斜角為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn).
(1)當(dāng)時(shí),求曲線的普通方程與直線的參數(shù)方程;
(2)求點(diǎn)到兩點(diǎn)的距離之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若a=0時(shí),求函數(shù)的零點(diǎn);
(2)若a=4時(shí),求函數(shù)在區(qū)間[2,5]上的最大值和最小值;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計(jì)2018年上半年每個(gè)月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)請(qǐng)用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合與的關(guān)系;
(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測(cè)當(dāng)晝夜溫差升高時(shí)患感冒的小朋友的人數(shù)會(huì)有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的奇函數(shù).
(1)求的值;
(2)證明在上單調(diào)遞減;
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①函數(shù)y=2sin的圖象的一條對(duì)稱軸是x=;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)對(duì)稱;
③若sin=sin,則x1-x2=kπ,其中k∈Z;
④函數(shù),x∈[0,2π]的圖象與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍為(1,3).
其中正確的有____(填寫所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的倍,縱坐標(biāo)坐標(biāo)都伸長為原來的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com