已知直線(xiàn)l1:ax+4y-2=0與直線(xiàn)l2:2x-5y+b=0互相垂直,垂足為(1,c),則a+b+c的值為(  )
分析:首先根據(jù)垂直得出-
a
4
×
2
5
=-1從而求出a的值,再由(1,c)在直線(xiàn)5x+2y-1=0和2x-5y+b=0上求出c和b的值,即可得出結(jié)果.
解答:解;∵直線(xiàn)l1:ax+4y-2=0與直線(xiàn)l2:2x-5y+b=0互相垂直
∴-
a
4
×
2
5
=-1
解得:a=10
∴直線(xiàn)l1:5x+2y-1=0
∵(1,c)在直線(xiàn)5x+2y-1=0上
∴5+2c-1=0 解得:c=-2
又∵(1,-2)也在直線(xiàn)l2:2x-5y+b=0上
∴2×1+5×2+b=0
解得:b=-12
∴a+b+c=10-12-2=-4
故選:A.
點(diǎn)評(píng):本題考查兩直線(xiàn)垂直的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l1:ax+2y+6=0和直線(xiàn)l2:x+(a-1)y+a2-1=0,l1⊥l2,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論:
①若命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題.
②已知直線(xiàn)l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.
④任意的銳角三角形ABC中,有sinA>cosB成立;
⑤直線(xiàn)x=
π
12
是函數(shù)y=2sin(2x-
π
6
)
的圖象的一條對(duì)稱(chēng)軸
其中正確結(jié)論的序號(hào)為
 
.(把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l1:ax+3y+1=0,l2:x+(a-2)y+a=0.當(dāng)l1∥l2時(shí),實(shí)數(shù)a的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l1:ax-y+1=0與l2:x+ay+1=0(a∈R),給出如下結(jié)論:
①不論a為何值時(shí),l1與l2都互相垂直;
②不論a為何值時(shí),l1與l2都關(guān)于直線(xiàn)x+y=0對(duì)稱(chēng);
③當(dāng)a變化時(shí),l1與l2分別經(jīng)過(guò)定點(diǎn)A(0,1)和B(-1,0);
④當(dāng)a變化時(shí),l1與l2的交點(diǎn)軌跡是以AB為直徑的圓(除去原點(diǎn)).
其中正確的結(jié)論有
①③④
①③④
.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•馬鞍山模擬)給出下列四個(gè)結(jié)論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線(xiàn)l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2

④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時(shí),f'(x)>0,g'(x)>0,則x<0時(shí),f'(x)>g'(x).
其中正確結(jié)論的序號(hào)是
①④
①④
(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案