x | 1+|x| |
x |
1+x |
x |
1+|x| |
-x |
1+|-x| |
x |
1+|x| |
x |
1+x |
x1 |
1+x1 |
x2 |
1+x2 |
x1-x2 |
(1+x1)(1+x2) |
x |
1+x |
x |
1+x |
1-k |
k |
x |
1+|x| |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013
下列說法正確的是
[ ]
A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)
B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)
C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:013
下列說法正確的是
[ ]
A.對(duì)于函數(shù)f(x),如果存在一個(gè)常數(shù)T,使得定義域內(nèi)的每一個(gè)x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)
B.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在一個(gè)x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)
C.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域內(nèi)存在若干個(gè)x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
D.對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得定義域的每一個(gè)x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都樹德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科 題型:022
對(duì)于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:
①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;
②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);
③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);
④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);
⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題
2 |
| ||
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com