已知cos(π+α)=-
1
2
,且α是第四象限角,計算:
(1)sin(2π-α);
(2)
sin[α+(2n+1)π]+sin[α-(2n+1)π]
sin(α+2nπ)•cos(α-2nπ)
(n∈Z).
考點:運用誘導(dǎo)公式化簡求值,同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:(1)已知等式利用誘導(dǎo)公式化簡求出cosα的值,再由α為第四象限角,求出sinα的值,原式利用誘導(dǎo)公式化簡后將sinα的值代入計算即可求出值;
(2)原式利用誘導(dǎo)公式化簡后,將sinα與cosα的值代入計算即可求出值.
解答: 解:(1)∵cos(π+α)=-cosα=-
1
2
,且α是第四象限角,
∴cosα=
1
2
,sinα=-
1-cos2α
=-
3
2
,
則sin(2π-α)=-sinα=
3
2
;
(2)∵cosα=
1
2
,
∴原式=
-sinα-sinα
sinαcosα
=
-2
cosα
=
-2
1
2
=-4.
點評:此題考查了運用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

cos2
π
8
-sin2
π
8
等于( 。
A、0
B、
2
2
C、1
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件解三角形:
(1)b=
3
,B=60°,c=1;   
(2)c=
6
,A=45°,a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(2+i)m2-
6m
1-i
-2(1-i),當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是(1)虛數(shù);(2)純虛數(shù);(3)零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次數(shù)學(xué)復(fù)習(xí)檢測中,老師從做過的A,B兩套試卷中共挑選出6道試題,若這6道試題被隨機地平均分給甲、乙、丙三位同學(xué)練習(xí),且甲同學(xué)至少有一道試題來自A試卷的概率是
3
5

(1)求這6道試題來自A,B試卷的各有幾道試題;
(2)若隨機變量X表示甲同學(xué)的試題中來自A的試題數(shù),求X分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x) 為“一階比增函數(shù)”.
(1)若f(x)=ax2+ax是“一階比增函數(shù)”,求實數(shù)a的取值范圍;
(2)若f(x)是“一階比增函數(shù)”,當(dāng)x2>x1>0時,試比較f(x1)+f(x2)與f(x1+x2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=
1
(n+1)2
(n∈N+),記f(n)=(1-a1)(1-a2)…(1-an),試通過計算f(1),f(2),f(3)的值,推測出f(n)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若當(dāng)x∈[1,2],y∈[2,3]時,
ax2+2y2
xy
-1>0恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(1-a)[(a-1)-2(-a) 
1
2
] 
1
2
=
 
(結(jié)果寫成指數(shù)冪的形式).

查看答案和解析>>

同步練習(xí)冊答案