分析 (1)令x=y=0,可得f(0)=0.令y=-x,可得f(-x)=-f(x),所以函數(shù)f(x)是奇函數(shù).
(2)設(shè)-1<x1<x2<1,則有f(x1)-f(x2)=f(x1)+(-x2)=$\frac{f({x}_{1}-{x}_{2})}{1-{x}_{1}{x}_{2}}$>0,所以f(x)在(-1,1)上是減函數(shù).
(3)利用單調(diào)性、奇偶性轉(zhuǎn)化為具體不等式即可得出結(jié)論.
解答 (1)證明:由x=y=0得f(0)+f(0)=f(0),∴f(0)=0,
任取x∈(-1,1),則-x∈(-1,1),f(x)+f(-x)=f($\frac{x-x}{1-{x}^{2}}$)=f(0)=0.
∴f(x)+f(-x)=0,
即f(x)=-f(-x).
∴f(x)在(-1,1)上為奇函數(shù).
(2)證明:設(shè)-1<x1<x2<1,
∵對(duì)任意x,y屬于(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$).
函數(shù)f(x)是奇函數(shù),
∴f(x1)-f(x2)=f(x1)+(-x2)=$\frac{f({x}_{1}-{x}_{2})}{1-{x}_{1}{x}_{2}}$
∵-1<x1<x2<1,∴-1<x1-x2<0,
∴f(x1-x2)>0,0<x1x2<1,
∴f(x1)-f(x2)>0,
∴f(x)在(-1,1)上是減函數(shù).
(3)解:f(1-a)+f(1-3a)<0,即f(1-a)<f(3a-1),
∵f(x)在(-1,1)上是減函數(shù),
∴-1<3a-1<1-a<1,
∴0<a<$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的判斷與應(yīng)用,考查函數(shù)單調(diào)性的證明,賦值法是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com