16.下面是被嚴(yán)重破壞的頻率分布表和頻率分布直方圖,根據(jù)殘表和殘圖,則 p=30,q=0.1.
分?jǐn)?shù)段 頻數(shù) 
[60,70) p 
[70,80)90  
[80,90) 60 
[90,100] 20 q

分析 由頻率分布表得到[70,80)內(nèi)的頻數(shù)為90,由頻率分布直方圖得到[70,80)內(nèi)的頻率為0.45,從而出樣本單元數(shù)n=200.由此能求出p,q.

解答 解:由頻率分布表得到[70,80)內(nèi)的頻數(shù)為90,
由頻率分布直方圖得到[70,80)內(nèi)的頻率為0.45,
∴樣本單元數(shù)n=$\frac{90}{0.45}$=200.
∴p=200-90-60-20=30.
q=$\frac{20}{200}$=0.1.
故答案為:30,0.1.

點(diǎn)評(píng) 本題考查頻率分布表中的頻數(shù)和頻率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意頻率分布表和頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從武漢市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量頻數(shù)頻率
0至5個(gè)00
6至10個(gè)300.3
11至15個(gè)300.3
16至20個(gè)ac
20個(gè)以上5b
合計(jì)1001
(Ⅰ)求a,b,c的值;
(Ⅱ)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)武漢市的總體數(shù)據(jù)且以頻率估計(jì)概率,若從全市大學(xué)生(數(shù)量很大)中隨機(jī)抽取3人,記X表示抽到的是微信群個(gè)數(shù)超過15個(gè)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$\overrightarrow{a}$=2(cosωx,cosωx),$\overrightarrow$=(cosωx,$\sqrt{3}$sinωx)(其中0<ω<1),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,
(1)若直線x=$\frac{π}{3}$是函數(shù)f(x)圖象的一條對(duì)稱軸,先列表再作出函數(shù)f(x)在區(qū)間[-π,π]上的圖象.
(2)求函數(shù)y=f(x),x∈[-π,π]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義域?yàn)镽的可導(dǎo)函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足f(x)>f′(x),且f(0)=3,則不等式f(x)<3ex的解集為(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)滿足當(dāng)x∈(1,2)時(shí),f(x-1)=2f($\frac{1}{x-1}$),當(dāng)x∈(1,3]時(shí),f(x)=lnx,若函數(shù)g(x)=$\frac{f(x)-ax}{x-1}$在區(qū)間[$\frac{1}{3}$,1)∪(1,3]上有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{,e}$)B.[$\frac{ln3}{3}$,$\frac{1}{,e}$)C.($\frac{ln3}{3}$,$\frac{1}{,e}$)D.(0,$\frac{ln3}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x的方程log2(x-a)=log2$\sqrt{4-{x}^{2}}$有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2a•4x-2x-1
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在x∈[-4,0]上的值域;
(2)若關(guān)于x的方程f(x)=0有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,曲線C1的方程為(x-2)2+y2=4.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2,射線C3的極坐標(biāo)方程為$θ=\frac{π}{4}(ρ>0)$.
(1)將曲線C1的直角坐標(biāo)方程化為極坐標(biāo)方程;
(2)若射線C3與曲線C1、C2分別交于點(diǎn)A、B,求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案